Partial Multi-Label Learning via Probabilistic Graph Matching Mechanism

被引:34
|
作者
Lyu, Gengyu [1 ]
Feng, Songhe [1 ]
Li, Yidong [2 ]
机构
[1] Beijing Jiaotong Univ, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
[2] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
partial multi-label learning; 'instance-to-label' matching; matching selection; graph matching; 'many-to-many' constraint;
D O I
10.1145/3394486.3403053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Partial Multi-Label learning (PML) learns from the ambiguous data where each instance is associated with a candidate label set, where only a part is correct. The key to solve such problem is to disam-biguate the candidate label sets and identify the correct assignments between instances and their ground-truth labels. In this paper, we interpret such assignments as instance-to-label matchings, and formulate the task of PML as a matching selection problem. To model such problem, we propose a novel grapH mAtching based partial muLti-label lEarning (HALE) framework, where Graph Matching scheme is incorporated owing to its good performance of exploiting the instance and label relationship. Meanwhile, since conventional one-to-one graph matching algorithm does not satisfy the constraint of PML problem that multiple instances may correspond to multiple labels, we extend the traditional probabilistic graph matching algorithm from one-to-one constraint to many-to-many constraint, and make the proposed framework to accommodate to the PML problem. Moreover, to improve the performance of predictive model, both the minimum error reconstruction and k-nearest-neighbor weight voting scheme are employed to assign more accurate labels for unseen instances. Extensive experiments on various data sets demonstrate the superiority of our proposed method.
引用
收藏
页码:105 / 113
页数:9
相关论文
共 50 条
  • [21] Partial Multi-Label Learning with Noisy Label Identification
    Xie, Ming-Kun
    Huang, Sheng-Jun
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6454 - 6461
  • [22] Adversarial Partial Multi-Label Learning with Label Disambiguation
    Yan, Yan
    Guo, Yuhong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10568 - 10576
  • [23] Partial Multi-label Learning using Label Compression
    Yu, Tingting
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Zhang, Xiangliang
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 761 - 770
  • [24] Partial Multi-label Learning with Label and Feature Collaboration
    Yu, Tingting
    Yu, Guoxian
    Wang, Jun
    Guo, Maozu
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 621 - 637
  • [25] Partial multi-label learning with label and classifier correlations
    Wang, Ke
    Guan, Yahu
    Xie, Yunyu
    Jia, Zhaohong
    Ye, Hong
    Duan, Zhangling
    Liang, Dong
    INFORMATION SCIENCES, 2025, 712
  • [26] Partial Multi-Label Learning With Noisy Label Identification
    Xie, Ming-Kun
    Huang, Sheng-Jun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3676 - 3687
  • [27] A Unified Framework for Graph-Based Multi-View Partial Multi-Label Learning
    Yuan, Jiazheng
    Liu, Wei
    Gu, Zhibin
    Feng, Songhe
    IEEE ACCESS, 2023, 11 : 49205 - 49215
  • [28] Multi-label Learning via Codewords
    Sedghi, Mahlagha
    Huang, Yinjie
    Georgiopoulos, Michael
    Anagnostopoulos, Georgios
    2018 IEEE 30TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2018, : 221 - 228
  • [29] Partial Multi-label Learning with Instance Correlations
    Gao, Guangliang
    Zhan, Zhiwei
    Sun, Jiachen
    Sun, Aiqin
    Lan, Haoliang
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND NETWORKS, VOL II, CENET 2023, 2024, 1126 : 432 - 438
  • [30] Partial multi-label learning with mutual teaching
    Yan, Yan
    Li, Shining
    Feng, Lei
    KNOWLEDGE-BASED SYSTEMS, 2021, 212