multiTFA: a Python']Python package for multi-variate thermodynamics-based flux analysis

被引:7
|
作者
Mahamkali, Vishnuvardhan [1 ]
McCubbin, Tim [1 ]
Beber, Moritz Emanuel [2 ]
Noor, Elad [3 ]
Marcellin, Esteban [1 ]
Nielsen, Lars Keld [1 ,2 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[2] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2800 Lyngby, Denmark
[3] Weizmann Inst Sci, Dept Plant & Environm Sci, IL-7610001 Rehovot, Israel
基金
澳大利亚研究理事会;
关键词
MODELS;
D O I
10.1093/bioinformatics/btab151
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: We achieve a significant improvement in thermodynamic-based flux analysis (TFA) by introducing multivariate treatment of thermodynamic variables and leveraging component contribution, the state-of-the-art implementation of the group contribution methodology. Overall, the method greatly reduces the uncertainty of thermodynamic variables. Results: We present multiTFA, a Python implementation of our framework. We evaluated our application using the core Escherichia coli model and achieved a median reduction of 6.8 kJ/mol in reaction Gibbs free energy ranges, while three out of 12 reactions in glycolysis changed from reversible to irreversible.
引用
收藏
页码:3064 / 3066
页数:3
相关论文
共 50 条
  • [41] scikit-fda: A Python']Python Package for Functional Data Analysis
    Ramos-Carreno, Carlos
    Carbajo-Berrocal, Miguel
    Torrecilla, Jose Luis
    Marcos, Pablo
    Suarez, Alberto
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (02): : 1 - 37
  • [42] PyCoMo: a python']python package for community metabolic model creation and analysis
    Predl, Michael
    Miesskes, Marianne
    Rattei, Thomas
    Zanghellini, Juergen
    BIOINFORMATICS, 2024, 40 (04)
  • [43] powerlaw: A Python']Python Package for Analysis of Heavy-Tailed Distributions
    Alstott, Jeff
    Bullmore, Edward T.
    Plenz, Dietmar
    PLOS ONE, 2014, 9 (01):
  • [44] EFMlrs: a Python']Python package for elementary flux mode enumeration via lexicographic reverse search
    Buchner, Bianca A.
    Zanghellini, Juergen
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [45] OpenSoundscape: An open-source bioacoustics analysis package for Python']Python
    Lapp, Sam
    Rhinehart, Tessa
    Freeland-Haynes, Louis
    Khilnani, Jatin
    Syunkova, Alexandra
    Kitzes, Justin
    METHODS IN ECOLOGY AND EVOLUTION, 2023, 14 (09): : 2321 - 2328
  • [46] TAPsolver: A Python']Python package for the simulation and analysis of TAP reactor experiments
    Yonge, Adam
    Kunz, M. Ross
    Batchu, Rakesh
    Fang, Zongtang
    Issac, Tobin
    Fushimi, Rebecca
    Medford, Andrew J.
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [47] CBPtools: a Python']Python package for regional connectivity-based parcellation
    Reuter, Niels
    Genon, Sarah
    Masouleh, Shahrzad Kharabian
    Hoffstaedter, Felix
    Liu, Xiaojin
    Kalenscher, Tobias
    Eickhoff, Simon B.
    Patil, Kaustubh R.
    BRAIN STRUCTURE & FUNCTION, 2020, 225 (04): : 1261 - 1275
  • [48] PyRINEX: a new multi-purpose Python']Python package for GNSS RINEX data
    Han, Jinzhen
    Lee, Seung Jun
    Yun, Hong Sik
    Kim, Kwang Bae
    Bae, Sang Won
    PEERJ COMPUTER SCIENCE, 2024, 10 : 1 - 19
  • [49] PyCSP: A Python']Python package for the analysis and simplification of chemically reacting systems based on Computational Singular Perturbation
    Galassi, Riccardo Malpica
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 276
  • [50] A Python']Python package for the local multiscale analysis of spatial point processes (LomPy)
    Lengyel, Janka
    Semecurbe, Francois
    Roux, Stephane G.
    ENVIRONMENT AND PLANNING B-URBAN ANALYTICS AND CITY SCIENCE, 2024, 51 (03) : 778 - 787