Between coloring and list-coloring: μ-coloring

被引:0
|
作者
Bonomo, Flavia [1 ]
Cecowski Palacio, Mariano [2 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Dept Computac, Fac Ciencias Exactas & Nat, RA-1053 Buenos Aires, DF, Argentina
关键词
cographs; coloring; list-coloring; mu-coloring; M-perfect graphs; perfect graphs; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new variation of the coloring problem, mu-coloring, is defined in this paper. A coloring of a graph G = (V, E) is a function f : V -> N such that f(v) not equal f(w) if v is adjacent to w. Given a graph G = (V, E) and a function mu : V -> N, G is mu-colorable if it admits a coloring f with f(v) <= mu(v) for each v is an element of V. It is proved that mu-coloring lies between coloring and list-coloring, in the sense of generalization of problems and computational complexity. Furthermore, the notion of perfection is extended to mu-coloring, giving rise to a new characterization of cographs. Finally, a polynomial time algorithm to solve mu-coloring for cographs is shown.
引用
收藏
页码:383 / 398
页数:16
相关论文
共 50 条
  • [1] Exploring the complexity boundary between coloring and list-coloring
    Bonomo, Flavia
    Duran, Guillermo
    Marenco, Javier
    [J]. ANNALS OF OPERATIONS RESEARCH, 2009, 169 (01) : 3 - 16
  • [2] Exploring the complexity boundary between coloring and list-coloring
    Flavia Bonomo
    Guillermo Durán
    Javier Marenco
    [J]. Annals of Operations Research, 2009, 169 : 3 - 16
  • [3] Some (in)tractable Parameterizations of Coloring and List-Coloring
    Arora, Pranav
    Banik, Aritra
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    [J]. FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 126 - 139
  • [4] On a list-coloring problem
    Gravier, S
    Maffray, F
    Mohar, B
    [J]. DISCRETE MATHEMATICS, 2003, 268 (1-3) : 303 - 308
  • [5] Differences between the list-coloring and DP-coloring for planar graphs
    Abe, Toshiki
    [J]. DISCRETE MATHEMATICS, 2021, 344 (08)
  • [6] On list-coloring outerplanar graphs
    Hutchinson, Joan P.
    [J]. JOURNAL OF GRAPH THEORY, 2008, 59 (01) : 59 - 74
  • [7] List-coloring embedded graphs
    Dvorak, Zdenek
    Kawarabayashi, Ken-ichi
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1004 - 1012
  • [8] On the complexity of a restricted list-coloring problem
    Dror, M
    Finke, G
    Gravier, S
    Kubiak, W
    [J]. DISCRETE MATHEMATICS, 1999, 195 (1-3) : 103 - 109
  • [9] On list-coloring extendable outerplanar graphs
    Hutchinson, Joan P.
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2012, 5 (01) : 175 - 188
  • [10] A note on list-coloring powers of graphs
    Kosar, Nicholas
    Petrickova, Sarka
    Reiniger, Benjamin
    Yeager, Elyse
    [J]. DISCRETE MATHEMATICS, 2014, 332 : 10 - 14