On the complexity of a restricted list-coloring problem

被引:10
|
作者
Dror, M
Finke, G
Gravier, S
Kubiak, W
机构
[1] Univ Arizona, Coll Business & Publ Adm, Dept Management Informat Syst, Tucson, AZ 85721 USA
[2] Univ Grenoble 1, Lab Leibniz, F-38031 Grenoble 1, France
[3] Eotvos Lorand Univ, H-1088 Budapest, Hungary
[4] Univ Grenoble 1, Lab Leibniz, F-38041 Grenoble, France
关键词
D O I
10.1016/S0012-365X(98)00169-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate a restricted list-coloring problem. Given a graph G=(V,E), a non empty set of colors L, and a nonempty subset L(v) of L for each vertex v, find an L-coloring of G with the size of each class of colors being equal to a given integer. This restricted list-coloring problem was proposed by de Werra. We prove that this problem is NP-Complete even if the graph is a path with at most two colors on each vertex list. We then give a polynomial algorithm which solves this problem for the case where the total number of colors occurring in all lists is fixed. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:103 / 109
页数:7
相关论文
共 50 条
  • [1] On a list-coloring problem
    Gravier, S
    Maffray, F
    Mohar, B
    [J]. DISCRETE MATHEMATICS, 2003, 268 (1-3) : 303 - 308
  • [2] Exploring the complexity boundary between coloring and list-coloring
    Bonomo, Flavia
    Duran, Guillermo
    Marenco, Javier
    [J]. ANNALS OF OPERATIONS RESEARCH, 2009, 169 (01) : 3 - 16
  • [3] Exploring the complexity boundary between coloring and list-coloring
    Flavia Bonomo
    Guillermo Durán
    Javier Marenco
    [J]. Annals of Operations Research, 2009, 169 : 3 - 16
  • [4] Between coloring and list-coloring: μ-coloring
    Bonomo, Flavia
    Cecowski Palacio, Mariano
    [J]. ARS COMBINATORIA, 2011, 99 : 383 - 398
  • [5] Some (in)tractable Parameterizations of Coloring and List-Coloring
    Arora, Pranav
    Banik, Aritra
    Paliwal, Vijay Kumar
    Raman, Venkatesh
    [J]. FRONTIERS IN ALGORITHMICS (FAW 2018), 2018, 10823 : 126 - 139
  • [6] On list-coloring outerplanar graphs
    Hutchinson, Joan P.
    [J]. JOURNAL OF GRAPH THEORY, 2008, 59 (01) : 59 - 74
  • [7] List-coloring embedded graphs
    Dvorak, Zdenek
    Kawarabayashi, Ken-ichi
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1004 - 1012
  • [8] A note on list-coloring powers of graphs
    Kosar, Nicholas
    Petrickova, Sarka
    Reiniger, Benjamin
    Yeager, Elyse
    [J]. DISCRETE MATHEMATICS, 2014, 332 : 10 - 14
  • [9] Approximating list-coloring on a fixed surface
    Kawarabayashi, Ken-ichi
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 333 - 344
  • [10] The list-coloring function of signed graphs
    Huang, Sumin
    Qian, Jianguo
    Wang, Wei
    [J]. DISCRETE MATHEMATICS, 2024, 347 (03)