Object localization using texture Motifs and Markov random fields

被引:0
|
作者
Newsam, S [1 ]
Bhagavathy, S [1 ]
Manjunath, BS [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a novel approach to object localization in complex imagery. In particular, the spatial extents of objects characterized by distinct spatial signatures at multiple scales are estimated by using statistical models to control a simple region growing process. Texture motifs are used to model the spatial signatures at the smallest, or pixel, scale. Markov random fields are used to model the spatial signatures at the larger, or motif, scale. These models are used to iteratively expand a bounding box to approximate the spatial extent of an object. The approach is applied to localizing geo-spatial objects in high-resolution panchromatic aerial imagery.
引用
收藏
页码:1049 / 1052
页数:4
相关论文
共 50 条
  • [1] Texture modelling in mammograms using Markov random fields
    MacKenzie, IG
    Merouani, H
    McCall, J
    [J]. SIXTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND ITS APPLICATIONS, VOL 1, 1997, (443): : 289 - 293
  • [2] Restored texture segmentation using Markov random fields
    Kinge, Sanjaykumar
    Rani, B. Sheela
    Sutaone, Mukul
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 10063 - 10089
  • [3] Texture classification using nonparametric Markov random fields
    Paget, R
    Longstaff, ID
    Lovell, B
    [J]. DSP 97: 1997 13TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2: SPECIAL SESSIONS, 1997, : 67 - 70
  • [4] Object localization based on Markov random fields and symmetry interest points
    Donner, Rene
    Micusik, Branislav
    Langs, Georg
    Szumilas, Lech
    Peloschek, Philipp
    Friedrich, Klaus
    Bischof, Horst
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION- MICCAI 2007, PT 2, PROCEEDINGS, 2007, 4792 : 460 - +
  • [5] Texture segmentation using Gaussian Markov Random Fields and LEGION
    Cesmeli, E
    Wang, DL
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1529 - 1534
  • [6] MARKOV RANDOM-FIELDS FOR TEXTURE CLASSIFICATION
    CHEN, CC
    HUANG, CL
    [J]. PATTERN RECOGNITION LETTERS, 1993, 14 (11) : 907 - 914
  • [7] Infrared Texture Simulation Using Gaussian-Markov Random Fields
    Xiao-peng Shao
    Xiao-ming Zhao
    Jun Xu
    Jian-qi Zhang
    [J]. International Journal of Infrared and Millimeter Waves, 2004, 25 : 1699 - 1710
  • [8] Infrared texture simulation using Gaussian-Markov random fields
    Shao, XP
    Zhao, XM
    Xu, J
    Zhang, JQ
    [J]. INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 25 (11): : 1699 - 1710
  • [9] Texture segmentation of images on the basis of Markov random fields
    Kovtun, I.V.
    [J]. Upravlyayushchie Sistemy i Mashiny, 2003, (04): : 46 - 56
  • [10] THE USE OF MARKOV RANDOM-FIELDS AS MODELS OF TEXTURE
    HASSNER, M
    SKLANSKY, J
    [J]. COMPUTER GRAPHICS AND IMAGE PROCESSING, 1980, 12 (04): : 357 - 370