q-Bernstein polynomials and their iterates

被引:167
|
作者
Ostrovska, S [1 ]
机构
[1] Atilim Univ, Dept Math, TR-06836 Ankara, Turkey
关键词
q-Bernstein polynomials; q-integers; q-binomial coefficients; convergence; iterates;
D O I
10.1016/S0021-9045(03)00104-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-n (f,q;x), n = 1,2,... be q-Bernstein polynomials of a function f: [0, 1] --> C. The polynomials B-n(f, 1; x) are classical Bernstein polynomials. For q not equal 1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: \z\ < q + ε} the rate of convergence of {B-n(f, q; x)} to f (x) in the norm of C[0, 1] has the order q(-n) (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {B-n(jn) (f, q; x)}, where both n --> infinity and j(n) --> infinity, are studied. It is shown that for q is an element of (0, 1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of j(n) --> infinity. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:232 / 255
页数:24
相关论文
共 50 条
  • [21] ON THE EXTENDED KIM'S q-BERNSTEIN POLYNOMIALS
    Rim, S. -H.
    Jang, L. C.
    Choi, J.
    Kim, Y. H.
    Lee, B.
    Kim, T.
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (02) : 282 - 295
  • [22] On the Convergence of the q-Bernstein Polynomials for Power Functions
    Ostrovska, Sofiya
    Ozban, Ahmet Yasar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [23] THE CONVERGENCE OF q-BERNSTEIN POLYNOMIALS (0 &lt; q &lt; 1) AND LIMIT q-BERNSTEIN OPERATORS IN COMPLEX DOMAINS
    Ostrovska, Sofiya
    Wang, Heping
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (04) : 1279 - 1291
  • [24] Convergence of Iterates of q-Bernstein and (p,q)-Bernstein Operators and the Kelisky-Rivlin Type Theorem
    Rahman, Shagufta
    Mursaleen, M.
    Alkhaldi, Ali H.
    [J]. FILOMAT, 2018, 32 (12) : 4351 - 4364
  • [25] A NOTE ON THE q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Park, Jin-Woo
    Pak, Hong Kyung
    Rim, Seog-Hoon
    Kim, Taekyun
    Lee, Sang-Hun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (04) : 722 - 729
  • [26] A NOTE ON q-BERNOULLI NUMBERS AND q-BERNSTEIN POLYNOMIALS
    Kim, Taekyun
    Ryoo, Cheon Seoung
    Yi, Heungsu
    [J]. ARS COMBINATORIA, 2012, 104 : 437 - 447
  • [27] Saturation of convergence for q-Bernstein polynomials in the case q ≥ 1
    Wang, Heping
    Wu, XueZhi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 337 (01) : 744 - 750
  • [28] Approximation by q-Bernstein Polynomials in the Case q → 1+
    Wu, Xuezhi
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [29] Iterates of q-Bernstein operators on triangular domain with all curved sides
    Iliyas, Mohammad
    Khan, Asif
    Arif, Mohd
    Mursaleen, Mohammad
    Lone, Mudassir Rashid
    [J]. DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 891 - 899
  • [30] Approximation by Quaternion q-Bernstein Polynomials, q &gt; 1
    Gal, Sorin G.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2012, 22 (02) : 313 - 319