A Note on the Minimum Size of a Point Set Containing Three Nonintersecting Empty Convex Polygons

被引:0
|
作者
Yang, Qing [1 ]
You, Zengtai [2 ]
You, Xinshang [3 ]
机构
[1] Shanxi Univ Finance & Econ, Fac Accounting, Taiyuan 030006, Shanxi, Peoples R China
[2] Dalian Minzu Univ, Coll Comp Sci & Engn, Dalian 116600, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Econ & Management, Qingdao 266590, Peoples R China
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 10期
关键词
planar point set; convex polygon; disjoint holes; PARTITION PROBLEM;
D O I
10.3390/sym10100447
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Let P be a planar point set with no three points collinear, k points of P be a k-hole of P if the k points are the vertices of a convex polygon without points of P. This article proves 13 is the smallest integer such that any planar points set containing at least 13 points with no three points collinear, contains a 3-hole, a 4-hole and a 5-hole which are pairwise disjoint.
引用
收藏
页数:17
相关论文
共 29 条