Some Non-Compactness Results for Locally Homogeneous Contact Metric Manifolds

被引:1
|
作者
Lotta, Antonio [1 ]
Martin-Molina, Veronica [2 ]
机构
[1] Univ Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Seville, Fac Ciencias Educ, Dept Didact Matemat, C Pirotecnia S-N, Seville 41013, Spain
关键词
Locally homogeneous; contact metric manifold; regular contact manifold; Jacobi operator;
D O I
10.1007/s00025-022-01699-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit some sufficient conditions ensuring the non-compactness of a locally homogeneous, regular, contact metric manifold, under suitable assumptions on the Jacobi operator of the Reeb vector field.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Certain results on almost contact pseudo-metric manifolds
    V. Venkatesha
    Devaraja Mallesha Naik
    Mukut Mani Tripathi
    Journal of Geometry, 2019, 110
  • [42] CERTAIN RESULTS ON THREE-DIMENSIONAL CONTACT METRIC MANIFOLDS
    Ghosh, Amalendu
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2010, 3 (04) : 577 - 591
  • [43] Certain results on the conharmonic curvature tensor of (κ, μ)-contact metric manifolds
    Divyashree, G.
    Venkatesha
    CUBO-A MATHEMATICAL JOURNAL, 2020, 22 (01): : 71 - 84
  • [44] SOME WEAKLY EINSTEIN CONTACT METRIC 3-MANIFOLDS
    Wang, Yaning
    Wang, Pei
    KODAI MATHEMATICAL JOURNAL, 2023, 46 (03) : 324 - 339
  • [45] Certain results on almost contact pseudo-metric manifolds
    Venkatesha, V.
    Naik, Devaraja Mallesha
    Tripathi, Mukut Mani
    JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [46] SOME RESULTS ON PSEUDOSYMMETRIC NORMAL PARACONTACT METRIC MANIFOLDS
    Atceken, Mehmet
    Mert, Tugba
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (04): : 1044 - 1058
  • [47] Solvability of a fractional Cauchy problem based on modified fixed point results of non-compactness measures
    Nashine, Hemant Kumar
    Ibrahim, Rabha W.
    AIMS MATHEMATICS, 2019, 4 (03): : 847 - 859
  • [48] Three-dimensional homogeneous contact metric manifolds with weakly ?-Einstein structures
    Chun, Sun Hyang
    Euh, Yunhee
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (04) : 1247 - 1257
  • [49] A theorem of non-metric rigidity for Hermitian locally symmetric manifolds
    Klingler, B
    COMMENTARII MATHEMATICI HELVETICI, 2001, 76 (02) : 200 - 217
  • [50] Notes on some classes of 3-dimensional contact metric manifolds
    Jin, J. E.
    Park, J. H.
    Sekigawa, K.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2012, 17 (02): : 54 - 65