Global Optimization Using Novel Randomly Adapting Particle Swarm Optimization Approach

被引:0
|
作者
Li, Nai-Jen [1 ]
Wang, Wen-June [1 ]
Hsu, Chen-Chien [2 ]
Lin, Chih-Min [3 ]
机构
[1] Natl Cent Univ, Dept Elect Engn, Tao Yuan, Taiwan
[2] Natl Taiwan Normal Univ, Dept Appl Elect Technol, Taipei, Taiwan
[3] Yuan Ze Univ, Dept Elect Engn, Taoyuan, Taiwan
关键词
Randomly adapting particle swarm optimization; weighed particle; optimization; evolutionary algorithm; CONVERGENCE; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel randomly adapting particle swarm optimization (RAPSO) approach which uses a weighed particle in a swarm to solve multi-dimensional optimization problems. In the proposed method, the strategy of the RAPSO acquires the benefit from a weighed particle to achieve optimal position in explorative and exploitative search. The weighed particle provides a better direction of search and avoids trapping in local solution during the optimization process. The simulation results show the effectiveness of the RAPSO, which outperforms the traditional PSO method, cooperative random learning particle swarm optimization (CRPSO), genetic algorithm (GA) and differential evolution (DE) on the 6 benchmark functions.
引用
收藏
页码:1783 / 1787
页数:5
相关论文
共 50 条
  • [1] A Novel Particle Swarm Optimization Algorithm for Global Optimization
    Wang, Chun-Feng
    Liu, Kui
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [2] A Novel Simple Particle Swarm Optimization Algorithm for Global Optimization
    Zhang, Xin
    Zou, Dexuan
    Shen, Xin
    [J]. MATHEMATICS, 2018, 6 (12)
  • [3] A New Collaborative Approach to Particle Swarm Optimization for Global Optimization
    Kim, Joong Hoon
    Ngo, Thi Thuy
    Sadollah, Ali
    [J]. PROCEEDINGS OF FIFTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2015), VOL 2, 2016, 437 : 641 - 649
  • [4] Well Placement Optimization Using a Particle Swarm Optimization Algorithm, a Novel Approach
    Afshari, S.
    Pishvaie, M. R.
    Aminshahidy, B.
    [J]. PETROLEUM SCIENCE AND TECHNOLOGY, 2014, 32 (02) : 170 - 179
  • [5] A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems
    Bangyal, Waqas Haider
    Hameed, Abdul
    Alosaimi, Wael
    Alyami, Hashem
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [6] Velocity pausing particle swarm optimization: a novel variant for global optimization
    Shami, Tareq M. M.
    Mirjalili, Seyedali
    Al-Eryani, Yasser
    Daoudi, Khadija
    Izadi, Saadat
    Abualigah, Laith
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (12): : 9193 - 9223
  • [7] Velocity pausing particle swarm optimization: a novel variant for global optimization
    Tareq M. Shami
    Seyedali Mirjalili
    Yasser Al-Eryani
    Khadija Daoudi
    Saadat Izadi
    Laith Abualigah
    [J]. Neural Computing and Applications, 2023, 35 : 9193 - 9223
  • [8] Exponential Particle Swarm Optimization for Global Optimization
    Kassoul, Khelil
    Zufferey, Nicolas
    Cheikhrouhou, Naoufel
    Belhaouari, Samir Brahim
    [J]. IEEE ACCESS, 2022, 10 : 78320 - 78344
  • [9] On the improvements of particle swarm optimization for global optimization
    Yang, Chunxia
    Wang, Nuo
    [J]. ICIC Express Letters, 2011, 5 (03): : 809 - 815
  • [10] A modified particle swarm optimization for global optimization
    Yang C.-H.
    Tsai S.-W.
    Chuang L.-Y.
    Yang C.-H.
    [J]. International Journal of Advancements in Computing Technology, 2011, 3 (07) : 169 - 189