Velocity pausing particle swarm optimization: a novel variant for global optimization

被引:0
|
作者
Tareq M. Shami
Seyedali Mirjalili
Yasser Al-Eryani
Khadija Daoudi
Saadat Izadi
Laith Abualigah
机构
[1] University of York,Department of Electronic Engineering
[2] Torrens University Australia,Centre for Artificial Intelligence Research and Optimisation
[3] Yonsei University,Yonsei Frontier Lab
[4] Ericsson Canada Inc,Department of Electronics
[5] National institute of poste and telecommunication,Department of Computer Engineering and Information Technology
[6] Razi University,Prince Hussein Bin Abdullah College for Information Technology
[7] Al Al-Bayt University,Hourani Center for Applied Scientific Research
[8] Al-Ahliyya Amman University,Faculty of Information Technology
[9] Middle East University,Faculty of Information Technology
[10] Applied Science Private University,School of Computer Sciences
[11] Universiti Sains Malaysia,undefined
来源
关键词
Particle swarm optimization; PSO; Velocity pausing; Velocity pausing particle swarm optimization; VPPSO;
D O I
暂无
中图分类号
学科分类号
摘要
Particle swarm optimization (PSO) is one of the most well-regard metaheuristics with remarkable performance when solving diverse optimization problems. However, PSO faces two main problems that degrade its performance: slow convergence and local optima entrapment. In addition, the performance of this algorithm substantially degrades on high-dimensional problems. In the classical PSO, particles can move in each iteration with either slower or faster speed. This work proposes a novel idea called velocity pausing where particles in the proposed velocity pausing PSO (VPPSO) variant are supported by a third movement option that allows them to move with the same velocity as they did in the previous iteration. As a result, VPPSO has a higher potential to balance exploration and exploitation. To avoid the PSO premature convergence, VPPSO modifies the first term of the PSO velocity equation. In addition, the population of VPPSO is divided into two swarms to maintain diversity. The performance of VPPSO is validated on forty three benchmark functions and four real-world engineering problems. According to the Wilcoxon rank-sum and Friedman tests, VPPSO can significantly outperform seven prominent algorithms on most of the tested functions on both low- and high-dimensional cases. Due to its superior performance in solving complex high-dimensional problems, VPPSO can be applied to solve diverse real-world optimization problems. Moreover, the velocity pausing concept can be easily integrated with new or existing metaheuristic algorithms to enhance their performances. The Matlab code of VPPSO is available at: https://uk.mathworks.com/matlabcentral/fileexchange/119633-vppso.
引用
下载
收藏
页码:9193 / 9223
页数:30
相关论文
共 50 条
  • [1] Velocity pausing particle swarm optimization: a novel variant for global optimization
    Shami, Tareq M. M.
    Mirjalili, Seyedali
    Al-Eryani, Yasser
    Daoudi, Khadija
    Izadi, Saadat
    Abualigah, Laith
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (12): : 9193 - 9223
  • [2] Particle Swarm Optimization Algorithm Using Velocity Pausing and Adaptive Strategy
    Tang, Kezong
    Meng, Chengjian
    SYMMETRY-BASEL, 2024, 16 (06):
  • [3] A Novel Particle Swarm Optimization Algorithm for Global Optimization
    Wang, Chun-Feng
    Liu, Kui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [4] A Novel Simple Particle Swarm Optimization Algorithm for Global Optimization
    Zhang, Xin
    Zou, Dexuan
    Shen, Xin
    MATHEMATICS, 2018, 6 (12)
  • [5] Exponential Particle Swarm Optimization for Global Optimization
    Kassoul, Khelil
    Zufferey, Nicolas
    Cheikhrouhou, Naoufel
    Belhaouari, Samir Brahim
    IEEE ACCESS, 2022, 10 : 78320 - 78344
  • [6] On the improvements of particle swarm optimization for global optimization
    Yang, Chunxia
    Wang, Nuo
    ICIC Express Letters, 2011, 5 (03): : 809 - 815
  • [7] A modified particle swarm optimization for global optimization
    Yang C.-H.
    Tsai S.-W.
    Chuang L.-Y.
    Yang C.-H.
    International Journal of Advancements in Computing Technology, 2011, 3 (07) : 169 - 189
  • [8] An Improved Particle Swarm Optimization for Global Optimization
    Yan, Ping
    Jiao, Ming-hai
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2181 - 2185
  • [9] Modifications of Particle Swarm Optimization for Global Optimization
    Yang, Qin
    He, Guozhu
    Li, Li
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 2923 - 2926
  • [10] An adaptive particle swarm optimization for global optimization
    Zhen, Ziyang
    Wang, Zhisheng
    Liu, Yuanyuan
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 4, PROCEEDINGS, 2007, : 8 - +