Muscle Quantitative MR Imaging and Clustering Analysis in Patients with Facioscapulohumeral Muscular Dystrophy Type 1

被引:39
|
作者
Lareau-Trudel, Emilie [1 ]
Le Troter, Arnaud [2 ]
Ghattas, Badih [3 ]
Pouget, Jean [1 ]
Attarian, Shahram [1 ]
Bendahan, David [2 ]
Salort-Campana, Emmanuelle [1 ]
机构
[1] Univ Aix Marseille, CHU Timone, Ctr Reference Malad Neuromusculaires & SLA, Marseille, France
[2] Aix Marseille Univ, Ctr Resonance Magnet Biol & Med, UMR CNRS 7339, Marseille, France
[3] Aix Marseille Univ, Inst Math Marseille, Marseille, France
来源
PLOS ONE | 2015年 / 10卷 / 07期
关键词
ADIPOSE-TISSUE; SKELETAL-MUSCLE; MOLECULAR DIAGNOSIS; DNA REARRANGEMENTS; FAT INFILTRATION; INVOLVEMENT; QUANTIFICATION; SEGMENTATION; SEPARATION; PHENOTYPE;
D O I
10.1371/journal.pone.0132717
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Facioscapulohumeral muscular dystrophy type 1 (FSHD1) is the third most common inherited muscular dystrophy. Considering the highly variable clinical expression and the slow disease progression, sensitive outcome measures would be of interest. Methods and Findings Using muscle MRI, we assessed muscular fatty infiltration in the lower limbs of 35 FSHD1 patients and 22 healthy volunteers by two methods: a quantitative imaging (qMRI) combined with a dedicated automated segmentation method performed on both thighs and a standard T1-weighted four-point visual scale (visual score) on thighs and legs. Each patient had a clinical evaluation including manual muscular testing, Clinical Severity Score (CSS) scale and MFM scale. The intramuscular fat fraction measured using qMRI in the thighs was significantly higher in patients (21.9 +/- 20.4%) than in volunteers (3.6 +/- 2.8%) (p<0.001). In patients, the intramuscular fat fraction was significantly correlated with the muscular fatty infiltration in the thighs evaluated by the mean visual score (p<0.001). However, we observed a ceiling effect of the visual score for patients with a severe fatty infiltration clearly indicating the larger accuracy of the qMRI approach. Mean intramuscular fat fraction was significantly correlated with CSS scale (p <= 0.01) and was inversely correlated with MMT score, MFM subscore D1 (p <= 0.01) further illustrating the sensitivity of the qMRI approach. Overall, a clustering analysis disclosed three different imaging patterns of muscle involvement for the thighs and the legs which could be related to different stages of the disease and put forth muscles which could be of interest for a subtle investigation of the disease progression and/ or the efficiency of any therapeutic strategy. Conclusion The qMRI provides a sensitive measurement of fat fraction which should also be of high interest to assess disease progression and any therapeutic strategy in FSHD1 patients.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Upper Girdle Imaging in Facioscapulohumeral Muscular Dystrophy
    Tasca, Giorgio
    Monforte, Mauro
    Iannaccone, Elisabetta
    Laschena, Francesco
    Ottaviani, Pierfrancesco
    Leoncini, Emanuele
    Boccia, Stefania
    Galluzzi, Giuliana
    Pelliccioni, Marco
    Masciullo, Marcella
    Frusciante, Roberto
    Mercuri, Eugenio
    Ricci, Enzo
    PLOS ONE, 2014, 9 (06):
  • [32] Muscle imaging in facioscapulohumeral muscular dystrophy research: A scoping review and expert recommendations
    Vincenten, Sanne C. C.
    Teeselink, Sjan
    Mul, Karlien
    Heskamp, Linda
    Kan, Hermien E.
    Heerschap, Arend
    Cameron, Donnie
    Tasca, Giorgio
    Leung, Doris G.
    Voermans, Nicol C.
    van Engelen, Baziel G. M.
    van Alfen, Nens
    NEUROMUSCULAR DISORDERS, 2025, 47
  • [33] Getting the picture of facioscapulohumeral muscular dystrophy: Muscle magnetic resonance imaging and ultrasound
    Mul, K.
    Horlings, C.
    Vincenten, S.
    Voermans, N.
    van Alfen, N.
    van Engelen, B.
    NEUROMUSCULAR DISORDERS, 2016, 26 : S101 - S101
  • [34] Electrical Impedence Myography Correlates to Muscle Pathology on MRI and in Muscle Biopsies in Facioscapulohumeral Muscular Dystrophy Type 1
    Glenn, Melanie
    Jawdat, Omar
    Abuzinadah, Ahmad
    Jabari, Duaa
    Lee, Phil
    McCalley, Ayla
    Herbelin, Laura
    McVey, April
    Pasnoor, Mamatha
    Dimachkie, Mazen
    Barohn, Richard
    Statland, Jeffrey
    NEUROLOGY, 2016, 86
  • [35] Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging
    Marden, FA
    Connolly, AM
    Siegel, MJ
    Rubin, DA
    SKELETAL RADIOLOGY, 2005, 34 (03) : 140 - 148
  • [36] Compositional analysis of muscle in boys with Duchenne muscular dystrophy using MR imaging
    Franklin A. Marden
    Anne M. Connolly
    Marilyn J. Siegel
    David A. Rubin
    Skeletal Radiology, 2005, 34 : 140 - 148
  • [37] Quantitative muscle magnetic resonance imaging in patients with myotonic dystrophy type 1
    Marty, B.
    Le Louer, J.
    Canal, A.
    Hogrel, J. Y.
    Gyenge, M.
    Jebrouni, N.
    Reyngoudt, H.
    Bassez, G.
    NEUROMUSCULAR DISORDERS, 2020, 30 : S115 - S116
  • [38] Clinical and Genetic Analysis of Korean Patients with Facioscapulohumeral Muscular Dystrophy
    Ki, Chang-Seok
    Lee, Seung-Tae
    Kim, Kyung-Sook
    Kim, Jong-Won
    Hong, Yoon-Ho
    Sung, Jung-Joon
    Park, Kyung Seok
    Lee, Kwang-Woo
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2008, 23 (06) : 959 - 963
  • [39] Kinematic analysis of scapular movements in patients with facioscapulohumeral muscular dystrophy
    Demirci, C. Savcun
    Turgut, E.
    Ayvat, E.
    Onursal, O.
    Ayvat, F.
    Yildiz, T. I.
    Duzgun, I.
    Kilinc, M.
    Yildirim, S. Aksu
    JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2018, 38 : 88 - 93
  • [40] Deep phenotyping of facioscapulohumeral muscular dystrophy type 2 by magnetic resonance imaging
    Giacomucci, G.
    Monforte, M.
    Diaz-Manera, J.
    Mul, K.
    Torron, R. Fernandez
    Maggi, L.
    Bettolo, C. Marini
    Dahlqvist, J. R.
    Haberlova, J.
    Camano, P.
    Gros, M.
    Tartaglione, T.
    Cristiano, L.
    Gerevini, S.
    Calandra, P.
    Deidda, G.
    Giardina, E.
    Sacconi, S.
    Straub, V
    Vissing, J.
    Van Engelen, B.
    Ricci, E.
    Tasca, G.
    EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 (12) : 2604 - 2615