Differentiation of DCM Subtypes by using Cardiac MRI and Machine Learning

被引:0
|
作者
von Knobelsdorff, Florian [1 ]
机构
[1] KIZ Kardiol Zentrum, Eisenmannstr 4, D-80331 Munich, Germany
来源
KARDIOLOGIE | 2022年 / 16卷 / 05期
关键词
D O I
10.1007/s12181-022-00570-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:353 / 355
页数:3
相关论文
共 50 条
  • [21] Searching for optimal machine learning model to classify mild cognitive impairment (MCI) subtypes using multimodal MRI data
    Tatsuya Jitsuishi
    Atsushi Yamaguchi
    Scientific Reports, 12
  • [22] Cardiac Disease Analysis Using Machine Learning
    Mohandas, R.
    Akinapalli, Maniteja
    Chiluveru, Deepak
    Madadi, Sainath
    JOURNAL OF PHARMACEUTICAL NEGATIVE RESULTS, 2022, 13 : 1569 - 1574
  • [23] Prediction of PH Using AcidoCEST MRI and Machine Learning
    Li, T.
    Cardenas-Rodriguez, J.
    Pagel, M.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [24] Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI
    Mazin, Asim
    Hawkins, Samuel H.
    Stringfield, Olya
    Dhillon, Jasreman
    Manley, Brandon J.
    Jeong, Daniel K.
    Raghunand, Natarajan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Identification of sarcomatoid differentiation in renal cell carcinoma by machine learning on multiparametric MRI
    Asim Mazin
    Samuel H. Hawkins
    Olya Stringfield
    Jasreman Dhillon
    Brandon J. Manley
    Daniel K. Jeong
    Natarajan Raghunand
    Scientific Reports, 11
  • [26] Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI
    Ji Young Lee
    Kwang-sig Lee
    Bo Kyoung Seo
    Kyu Ran Cho
    Ok Hee Woo
    Sung Eun Song
    Eun-Kyung Kim
    Hye Yoon Lee
    Jung Sun Kim
    Jaehyung Cha
    European Radiology, 2022, 32 : 650 - 660
  • [27] Two distinc neuroanatomica subtypes of schizophrenia revealed using machine learning
    Chand, Ganesh B.
    Dwyer, Dominic B.
    Erus, Guray
    Sotiras, Aristeidis
    Varol, Erdem
    Srinivasan, Dhivya
    Doshi, Jimit
    Pomponio, Raymond
    Pigoni, Alessandro
    Dazzan, Paola
    Kahn, Rene S.
    Schnack, Hugo G.
    Zanetti, Marcus V.
    Meisenzahl, Eva
    Busatto, Geraldo F.
    Crespo-Facorro, Benedicto
    Pantelis, Christos
    Wood, Stephen J.
    Zhuo, Chuanjun
    Shinohara, Russell T.
    Shou, Haochang
    Fan, Yong
    Gur, Ruben C.
    Gur, Raquel E.
    Satterthwaite, Theodore D.
    Koutsouleris, Nikolaos
    Wolf, Daniel H.
    Davatzikos, Christos
    BRAIN, 2020, 143 : 1027 - 1038
  • [28] Predicting Hypertension Subtypes with Machine Learning Using Targeted Metabolites and Their Ratios
    Reel, Smarti
    Reel, Parminder S.
    Erlic, Zoran
    Amar, Laurence
    Pecori, Alessio
    Larsen, Casper K.
    Tetti, Martina
    Pamporaki, Christina
    Prehn, Cornelia
    Adamski, Jerzy
    Prejbisz, Aleksander
    Ceccato, Filippo
    Scaroni, Carla
    Kroiss, Matthias
    Dennedy, Michael C.
    Deinum, Jaap
    Eisenhofer, Graeme
    Langton, Katharina
    Mulatero, Paolo
    Reincke, Martin
    Rossi, Gian Paolo
    Lenzini, Livia
    Davies, Eleanor
    Gimenez-Roqueplo, Anne-Paule
    Assie, Guillaume
    Blanchard, Anne
    Zennaro, Maria-Christina
    Beuschlein, Felix
    Jefferson, Emily R.
    METABOLITES, 2022, 12 (08)
  • [29] Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI
    Lee, Ji Young
    Lee, Kwang-Sig
    Seo, Bo Kyoung
    Cho, Kyu Ran
    Woo, Ok Hee
    Song, Sung Eun
    Kim, Eun-Kyung
    Lee, Hye Yoon
    Kim, Jung Sun
    Cha, Jaehyung
    EUROPEAN RADIOLOGY, 2022, 32 (01) : 650 - 660
  • [30] Machine learning clustering of insomnia subtypes using digital phenotype data
    Cho, Chul-Hyun
    JOURNAL OF SLEEP RESEARCH, 2024, 33