Low-field magnetic resonance imaging of roots in intact clayey and silty soils

被引:17
|
作者
Bagnall, G. Cody [1 ]
Koonjoo, Neha [2 ,3 ,4 ]
Altobelli, Stephen A. [5 ]
Conradi, Mark S. [5 ]
Fukushima, Eiichi [5 ]
Kuethe, Dean O. [5 ]
Mullet, John E. [6 ]
Neely, Haly [7 ]
Rooney, William L. [7 ]
Stupic, Karl F. [8 ]
Weers, Brock [6 ]
Zhu, Bo [2 ,3 ,4 ]
Rosen, Matthew S. [2 ,3 ,4 ]
Morgan, Cristine L. S. [9 ]
机构
[1] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[2] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[5] ABQMR Inc, 2301 Yale Blvd SE,Suite C2, Albuquerque, NM 87106 USA
[6] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[7] Texas A&M Univ, Dept Soil & Crop Sci, College Stn, TX 77843 USA
[8] NIST, Div Appl Phys, 325 Broadway, Boulder, CO 80305 USA
[9] Soil Hlth Inst, 2803 Slater Rd,Suite 115, Morrisville, NC 27560 USA
关键词
WATER;
D O I
10.1016/j.geoderma.2020.114356
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
The development of a robust method to non-invasively visualize root morphology in natural soils has been hampered by the opaque, physical, and structural properties of soils. In this work we describe a novel technology, low field magnetic resonance imaging (LF-MRI), for imaging energy sorghum (Sorghum bicolor (L.) Moench) root morphology and architecture in intact soils. The use of magnetic fields much weaker than those used with traditional MRI experiments reduces the distortion due to magnetic material naturally present in agricultural soils. A laboratory based LF-MRI operating at 47 mT magnetic field strength was evaluated using two sets of soil cores: 1) soil/root cores of Weswood silt loam (Udifluventic Haplustept) and a Belk clay (Entic Hapluderts) from a conventionally tilled field, and 2) soil/root cores from rhizotrons filled with either a Houston Black (Udic Haplusterts) clay or a sandy loam purchased from a turf company. The maximum soil water nuclear magnetic resonance (NMR) relaxation time T-2 (4 ms) and the typical root water relaxation time T-2 (100 ms) are far enough apart to provide a unique contrast mechanism such that the soil water signal has decayed to the point of no longer being detectable during the data collection time period. 2-D MRI projection images were produced of roots with a diameter range of 1.5-2.0 mm using an image acquisition time of 15 min with a pixel resolution of 1.74 mm in four soil types. Additionally, we demonstrate the use of a data-driven machine learning reconstruction approach, Automated Transform by Manifold Approximation (AUTOMAP) to reconstruct raw data and improve the quality of the final images. The application of AUTOMAP showed a SNR (Signal to Noise Ratio) improvement of two fold on average. The use of low field MRI presented here demonstrates the possibility of applying low field MRI through intact soils to root phenotyping and agronomy to aid in understanding of root morphology and the spatial arrangement of roots in situ.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the feasibility of neurocurrent imaging by low-field nuclear magnetic resonance
    Burghoff, Martin
    Albrecht, Hans-Helge
    Hartwig, Stefan
    Hilschenz, Ingo
    Koerber, Rainer
    Hoefner, Nora
    Scheer, Hans-Juergen
    Voigt, Jens
    Trahms, Lutz
    Curio, Gabriel
    APPLIED PHYSICS LETTERS, 2010, 96 (23)
  • [22] Multipolar laminated electromagnet for low-field magnetic resonance imaging and electron paramagnetic resonance imaging
    Department of Electrical Engineering, University of l'Aquila, 67040 Poggio di Roio, L'Aquila, Italy
    IEEE Trans. Biomed. Eng., 7 (928-933):
  • [23] Multipolar laminated electromagnet for low-field magnetic resonance imaging and electron paramagnetic resonance imaging
    Chiricozzi, E
    Masciovecchio, C
    Villani, M
    Sotgiu, A
    Testa, L
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (07) : 928 - 933
  • [24] A Proposal of Gradient Coil Configuration for Low-Field Magnetic Resonance Imaging
    Fedotov, Alexander
    Pugovkin, Vladimir
    Burov, Denis
    Hurshkainen, Anna
    Mirabal, Carlos Cabal
    APPLIED MAGNETIC RESONANCE, 2024, 55 (08) : 767 - 774
  • [25] Low-Field Magnetic Resonance Imaging Findings of the Fetlock Region of Nonracehorses
    Auth, Adel K.
    Hinnigan, Guy J.
    Smith, Meredith A.
    Owen, Kathryn R.
    JOURNAL OF EQUINE VETERINARY SCIENCE, 2024, 132
  • [26] Low-field magnetic resonance imaging of the canine middle and inner ear
    Kneissl, S
    Probst, A
    Konar, M
    VETERINARY RADIOLOGY & ULTRASOUND, 2004, 45 (06) : 520 - 522
  • [27] PROS AND CONS OF LOW-FIELD MAGNETIC RESONANCE IMAGING IN VETERINARY PRACTICE
    Konar, Martin
    Lang, Johann
    VETERINARY RADIOLOGY & ULTRASOUND, 2011, 52 (01) : S5 - S14
  • [28] An Unmatched Radio Frequency Chain for Low-Field Magnetic Resonance Imaging
    Harper, Joshua R.
    Zarate, Cristhian
    Krauch, Federico
    Muhumuza, Ivan
    Molina, Jorge
    Obungoloch, Johnes
    Schiff, Steven J.
    FRONTIERS IN PHYSICS, 2022, 9
  • [29] Low-field magnetic resonance imaging: increased safety for pacemaker patients?
    Strach, Katharina
    Naehle, Claas Philip
    Muehlsteffen, Artur
    Hinz, Michael
    Bernstein, Adam
    Thomas, Daniel
    Linhart, Markus
    Meyer, Carsten
    Bitaraf, Sascha
    Schild, Hans
    Sommer, Torsten
    EUROPACE, 2010, 12 (07): : 952 - 960
  • [30] PORTABLE, BEDSIDE, LOW-FIELD MAGNETIC RESONANCE IMAGING OF ISCHEMIC STROKE
    Yuen, M.
    Mazurek, M.
    Cahn, B.
    Shah, J.
    By, S.
    Welch, E. B.
    Sacolick, L.
    O'Halloran, R.
    Dyvorne, H.
    Twieg, M.
    Ward, A.
    Timario, N.
    Falcone, G.
    Hwang, D.
    Kim, J.
    Jasne, A.
    Gobeske, K.
    Petersen, N.
    Sharma, R.
    Schindler, J.
    Matouk, C.
    Sansing, L.
    Wira, C.
    Gilmore, E.
    Sze, G.
    Rosen, M.
    Kimberly, W. T.
    Sheth, K.
    INTERNATIONAL JOURNAL OF STROKE, 2020, 15 (1_SUPPL) : 136 - 136