Niobium Diboride Nanoparticles Accelerating Polysulfide Conversion and Directing Li2S Nucleation Enabled High Areal Capacity Lithium-Sulfur Batteries

被引:146
|
作者
Wang, Bin [1 ]
Wang, Lu [1 ]
Zhang, Bo [1 ]
Zeng, Suyuan [2 ,3 ]
Tian, Fang [1 ]
Dou, Jianmin [2 ,3 ]
Qian, Yitai [1 ]
Xu, Liqiang [1 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, State Key Lab Crystal Mat,Minist Educ,Engn, Jinan 250100, Peoples R China
[2] Liaocheng Univ, Shandong Prov Key Lab, Collaborat Innovat Ctr Chem Energy Storage & Nove, Liaocheng 252000, Shandong, Peoples R China
[3] Liaocheng Univ, Sch Chem & Chem Engn, Liaocheng 252000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
polysulfide conversion; 3D-Li2S nucleation; niobium diboride nanoparticles; high sulfur loading areal capacity; GRAPHENE; CARBON; SPHERES;
D O I
10.1021/acsnano.2c01179
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The shuttle effect of polysulfides and Li2S sluggish nucleation are the major problems hampering the further development of lithium-sulfur batteries. The reasonable design for sulfur host materials with catalytic function has been an effective strategy for promoting polysulfide conversion. Compared with other types of transition metal compounds, transition metal borides with high conductivity and catalytic capability are more suitable as sulfur host materials. Herein, a niobium diboride (NbB2) nanoparticle with abundant and high-efficiency catalytic sites has been synthesized by facile solid-phase reaction. The NbB2 with both high conductivity and catalytic nature could regulate 3D-nucleation and growth of Li2S, decrease the reaction energy barrier, and accelerate the transformation of polysulfides. Thus, the NbB2 cathode could retain a high capacity of 1014 mAh g(-1) after 100 cycles. In addition, the high initial specific capacities of 703/609 mAh g(-1) are also achieved at 5 C/10 C and could run for 1000/1300 cycles within a low decay rate of 0.057%/0.051%. Even with a high sulfur loading up to 16.5 mg cm(-2), an initial areal capacity of 17 mAh cm(-2) could be achieved at 0.1 C. This work demonstrates a successful method for enhancing the kinetics of polysulfide conversion and directing Li2S nucleation.
引用
收藏
页码:4947 / 4960
页数:14
相关论文
共 50 条
  • [41] A Multifunctional Catalytic Interlayer for Propelling Solid-Solid Conversion Kinetics of Li2S2 to Li2S in Lithium-Sulfur Batteries
    Zuo, Xintao
    Zhen, Mengmeng
    Liu, Dapeng
    Yu, Haohan
    Feng, Xilan
    Zhou, Wei
    Wang, Hua
    Zhang, Yu
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (15)
  • [42] Hierarchical mesoporous heteroatom-doped carbon accelerating the adsorption and conversion of polysulfide for high performance Lithium-Sulfur batteries
    Liu, Kun
    Gu, Shuai
    Yuan, Huimin
    Wang, Hao
    Tan, Wen
    Jiang, Feng
    Chen, Jingjing
    Liao, Kemeng
    Yan, Chunliu
    Yang, Fan
    Lu, Zhouguang
    Xu, Zhenghe
    COMPOSITES COMMUNICATIONS, 2022, 30
  • [43] Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries
    Yun, Jong Hyuk
    Kim, Joo-Hyung
    Kim, Do Kyung
    Lee, Hyun-Wook
    NANO LETTERS, 2018, 18 (01) : 475 - 481
  • [44] Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries
    Wu, Min
    Cui, Yi
    Fu, Yongzhu
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (38) : 21479 - 21486
  • [45] Nano-compacted Li2S/Graphene Composite Cathode for High-Energy Lithium-Sulfur Batteries
    Hwang, Jang-Yeon
    Shin, Subeom
    Yoon, Chong S.
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2019, 4 (12) : 2787 - 2795
  • [46] Toward High Performance Lithium-Sulfur Batteries Based on Li2S Cathodes and Beyond: Status, Challenges, and Perspectives
    Su, Dawei
    Zhou, Dong
    Wang, Chengyin
    Wang, Guoxiu
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (38)
  • [47] A novel molecular synthesis route to Li2S loaded carbon fibers for lithium-sulfur batteries
    Brune, Veronika
    Bohr, Christoph
    Ludwig, Tim
    Wilhelm, Michael
    Hirt, Sebastian Daniel
    Fischer, Thomas
    Wennig, Sebastian
    Oberschachtsiek, Bernd
    Ichangi, Arun
    Mathur, Sanjay
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) : 9902 - 9910
  • [48] Three-Dimensional Growth of Li2S in Lithium-Sulfur Batteries Promoted by a Redox Mediator
    Gerber, Laura C. H.
    Frischmann, Peter D.
    Fan, Frank Y.
    Doris, Sean E.
    Qu, Xiaohui
    Scheuermann, Angelique M.
    Persson, Kristin
    Chiang, Yet-Ming
    Helms, Brett A.
    NANO LETTERS, 2016, 16 (01) : 549 - 554
  • [49] Enhancing the Efficient Utilization of Li2S in Lithium-Sulfur Batteries via Functional Additive Diethyldiselenide
    Li, Zhaoyang
    Wang, Mengran
    Yang, Jiewei
    Hong, Bo
    Lai, Yanqing
    Li, Jie
    ENERGY & FUELS, 2024, 38 (16) : 15762 - 15770
  • [50] Regulating the Li2S deposition by grain boundaries in metal nitrides for stable lithium-sulfur batteries
    Yang, Jin-Lin
    Cai, Da-Qian
    Lin, Qiaowei
    Wang, Xin-Yu
    Fang, Zou-Qiang
    Huang, Ling
    Wang, Zhi-Jie
    Hao, Xiao-Ge
    Zhao, Shi-Xi
    Li, Jia
    Cao, Guo-Zhong
    Lv, Wei
    NANO ENERGY, 2022, 91