Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals

被引:66
|
作者
Ni, S. [1 ]
Wang, Y. B. [1 ]
Liao, X. Z. [1 ]
Li, H. Q. [2 ]
Figueiredo, R. B. [3 ]
Ringer, S. P. [1 ]
Langdon, T. G. [4 ,5 ]
Zhu, Y. T. [6 ]
机构
[1] Univ Sydney, Sydney, NSW 2006, Australia
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Univ Fed Minas Gerais, BR-31270901 Belo Horizonte, MG, Brazil
[4] Univ Southampton, Southampton SO17 1BJ, Hants, England
[5] Univ So Calif, Los Angeles, CA 90089 USA
[6] N Carolina State Univ, Raleigh, NC 27695 USA
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
MOLECULAR-DYNAMICS SIMULATION; CENTERED-CUBIC METALS; DEFORMATION TWINS; ROOM-TEMPERATURE; FCC METALS; AL; DISLOCATION; GROWTH; COPPER; ALUMINUM;
D O I
10.1103/PhysRevB.84.235401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Both twinning and detwinning have been reported to occur during the deformation of nanocrystalline (nc) face-centered-cubic metals. This raises the issue of how these two processes compete with each other. Here, we report that the twinning process dominates in a certain range of grain sizes, whereas, the detwinning process dominates outside of this range to annihilate all twins. These experimental observations establish a full spectrum of grain-size effects on deformation twinning and detwinning and are explained by the deformation physics. They also provide a fundamental basis for understanding and designing the mechanical behavior of nc metals and alloys.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu
    Zhang, Jin-Yu
    Liu, Gang
    Wang, Rui Hong
    Li, Ju
    Sun, Jun
    Ma, Evan
    [J]. PHYSICAL REVIEW B, 2010, 81 (17):
  • [22] Grain size gradient and length scale effect on mechanical behaviors of surface nanocrystalline metals
    Jin, Hanxun
    Zhou, Jianqiu
    Chen, Yunqi
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 725 : 1 - 7
  • [23] The effect of grain size on the nanocrystalline growth in metals and its simulation by Monte Carlo method
    Sabeti, S. A.
    Pahlevaninezhad, M.
    Panjepour, M.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (07) : 2104 - 2111
  • [24] Stacking fault and twinning in nanocrystalline metals
    Liao, XZ
    Zhao, YH
    Srinivasan, SG
    Zhou, F
    Lavernia, EJ
    Baskes, MI
    Xu, HF
    Valiev, RZ
    Zhu, YT
    [J]. ULTRAFINE GRAINED MATERIALS III, 2004, : 3 - 10
  • [25] How grain size controls friction and wear in nanocrystalline metals
    Li, Ao
    Szlufarska, Izabela
    [J]. PHYSICAL REVIEW B, 2015, 92 (07):
  • [26] Grain size and alloying effects on dynamic recovery in nanocrystalline metals
    Sun, Z.
    Van Petegem, S.
    Cervellino, A.
    Blum, W.
    Van Swygenhoven, H.
    [J]. ACTA MATERIALIA, 2016, 119 : 104 - 114
  • [27] Grain-size dependent mechanical behavior of nanocrystalline metals
    Hahn, Eric N.
    Meyers, Marc A.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 646 : 101 - 134
  • [28] Grain Size-Dependent Thermal Expansion of Nanocrystalline Metals
    Olsson, Par A. T.
    Awala, Ibrahim
    Holmberg-Kasa, Jacob
    Krause, Andreas M. M.
    Tidefelt, Mattias
    Vigstrand, Oscar
    Music, Denis
    [J]. MATERIALS, 2023, 16 (14)
  • [29] The relationship between grain size and creep deformation of nanocrystalline body-centered cubic metals
    Zhao, Jing
    Qiu, Longshi
    Wang, Fei
    Zhao, Bin
    Wu, Jinping
    Zhang, Yusheng
    [J]. Thin Solid Films, 2022, 704
  • [30] The relationship between grain size and creep deformation of nanocrystalline body-centered cubic metals
    Zhao, Jing
    Qiu, Longshi
    Wang, Fei
    Zhao, Bin
    Wu, Jinping
    Zhang, Yusheng
    [J]. THIN SOLID FILMS, 2020, 704