DFT approaches to transport calculations in magnetic single-molecule devices

被引:9
|
作者
Martin-Rodriguez, Alejandro [1 ,2 ]
Aravena, Daniel [3 ]
Ruiz, Eliseo [1 ,2 ]
机构
[1] Univ Barcelona, Dept Quim Inorgan & Organ, Diagonal 645, E-08028 Barcelona, Spain
[2] Univ Barcelona, Inst Quim Teor & Computac, Diagonal 645, E-08028 Barcelona, Spain
[3] Univ Santiago Chile USACH, Fac Quim & Biol, Dept Quim Mat, Casilla 40,Correo 33, Santiago, Chile
关键词
Single-molecule junctions; Density functional calculations; Exchange-correlation functionals; Molecular spintronics; Magnetoresistance;
D O I
10.1007/s00214-016-1941-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron transport properties of single-molecule devices based on the [Fe(tzpy)(2)(NCS)(2)] complex placed between two gold electrodes have been explored using three different atomistic DFT methods. This kind of single-molecule devices is quite appealing because they can present magnetoresistance effects at room temperature. The three employed computational approaches are: (i) self-consistent non-equilibrium Green functions (NEGF) with periodic models that can be described as the most accurate between the state-of-art methods, and two non-self-consistent NEGF approaches using either periodic or non-periodic description of the electrodes (ii and iii). The analysis of the transmission spectra obtained with the three methods indicates that they provide similar qualitative results. To obtain a reasonable agreement with the experimental data, it is mandatory to employ density functionals beyond the commonly employed GGA (i.e., hybrid functionals) or to include on-site corrections for the Coulomb repulsion (GGA+U method).
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Nuclear Magnetic Resonance Chemical Shift as a Probe for Single-Molecule Charge Transport
    Qiao, X.
    Sil, A.
    Sangtarash, S.
    Smith, S. M.
    Wu, C.
    Robertson, C. M.
    Nichols, R. J.
    Higgins, S. J.
    Sadeghi, H.
    Vezzoli, A.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (19)
  • [42] Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet
    Misiorny, M.
    Burzuri, E.
    Gaudenzi, R.
    Park, K.
    Leijnse, M.
    Wegewijs, M. R.
    Paaske, J.
    Cornia, A.
    van der Zant, H. S. J.
    PHYSICAL REVIEW B, 2015, 91 (03)
  • [43] Flux through membrane channel: linear transport vs. single-molecule approaches
    Berezhkovskii, Alexander M.
    Bezrukov, Sergey M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (04) : 2192 - 2196
  • [44] Single-Molecule Transport at a Rectifying GaAs Contact
    Vezzoli, Andrea
    Brooke, Richard J.
    Ferri, Nicolo
    Higgins, Simon J.
    Schwarzacher, Walther
    Nichols, Richard J.
    NANO LETTERS, 2017, 17 (02) : 1109 - 1115
  • [45] Advances and challenges in single-molecule electron transport
    Evers, Ferdinand
    Korytar, Richard
    Tewari, Sumit
    van Ruitenbeek, Jan M.
    REVIEWS OF MODERN PHYSICS, 2020, 92 (03)
  • [46] Single-Molecule Study of Transmembrane Protein Transport
    Mudumbi, Krishna C.
    Yang, Weidong
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 266A - 266A
  • [47] Identifying Transport Behavior of Single-Molecule Trajectories
    Regner, Benjamin M.
    Tartakovsky, Daniel M.
    Sejnowski, Terrence J.
    BIOPHYSICAL JOURNAL, 2014, 107 (10) : 2345 - 2351
  • [48] Manipulating transport through a single-molecule junction
    Sotthewes, Kai
    Heimbuch, Rene
    Zandvliet, Harold J. W.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (21):
  • [49] Single-molecule junctions beyond electronic transport
    Sriharsha V. Aradhya
    Latha Venkataraman
    Nature Nanotechnology, 2013, 8 : 399 - 410
  • [50] Resonant tunneling transport in single-molecule junctions
    Zang, Yaping
    Ray, Suman
    Borges, Anders
    Fung, E-Dean
    Solomon, Gemma
    Patil, Satish
    Venkataraman, Latha
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255