Sine Entropy of Uncertain Random Variables

被引:4
|
作者
Shi, Gang [1 ]
Zhuang, Rujun [1 ]
Sheng, Yuhong [2 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 11期
基金
中国国家自然科学基金;
关键词
chance theory; uncertain random variable; sine entropy; partial sine entropy;
D O I
10.3390/sym13112023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Entropy is usually used to measure the uncertainty of uncertain random variables. It has been defined by logarithmic entropy with chance theory. However, this logarithmic entropy sometimes fails to measure the uncertainty of some uncertain random variables. In order to solve this problem, this paper proposes two types of entropy for uncertain random variables: sine entropy and partial sine entropy, and studies some of their properties. Some important properties of sine entropy and partial sine entropy, such as translation invariance and positive linearity, are obtained. In addition, the calculation formulas of sine entropy and partial sine entropy of uncertain random variables are given.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Sine entropy of uncertain set and its applications
    Yao, Kai
    APPLIED SOFT COMPUTING, 2014, 22 : 432 - 442
  • [22] On the Entropy and the Maximum Entropy Principle of Uncertain Variables
    Liu, Yujun
    Ma, Guanzhong
    ENTROPY, 2023, 25 (08)
  • [23] Complex uncertain random variables
    Rong Gao
    Zhiqiang Zhang
    Hamed Ahmadazde
    Dan A. Ralescu
    Soft Computing, 2018, 22 : 5817 - 5824
  • [24] Complex uncertain random variables
    Gao, Rong
    Zhang, Zhiqiang
    Ahmadazde, Hamed
    Ralescu, Dan A.
    SOFT COMPUTING, 2018, 22 (17) : 5817 - 5824
  • [25] Maximum Entropy Principle for Uncertain Variables
    Chen, Xiaowei
    Dai, Wei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2011, 13 (03) : 232 - 236
  • [26] Soft variables as a generalization of uncertain, random and fuzzy variables
    Bubnicki, Z
    NEURAL NETWORKS AND SOFT COMPUTING, 2003, : 4 - 17
  • [27] On the complete convergence for uncertain random variables
    Yuncai Yu
    Xinsheng Liu
    Yu Zhang
    Zhifu Jia
    Soft Computing, 2022, 26 : 1025 - 1031
  • [28] On the complete convergence for uncertain random variables
    Yu, Yuncai
    Liu, Xinsheng
    Zhang, Yu
    Jia, Zhifu
    SOFT COMPUTING, 2022, 26 (03) : 1025 - 1031
  • [29] Convergence in Distribution for Uncertain Random Variables
    Gao, Rong
    Ralescu, Dan A.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (03) : 1427 - 1434
  • [30] Cross-entropy measure of uncertain variables
    Chen, Xiaowei
    Kar, Samarjit
    Ralescu, Dan A.
    INFORMATION SCIENCES, 2012, 201 : 53 - 60