Stable Clinical Prediction using Graph Support Vector Machines

被引:0
|
作者
Kamkar, Iman [1 ]
Gupta, Sunil [1 ]
Li, Cheng [1 ]
Dinh Phung [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ, Ctr Pattern Recognit & Data Analyt, Geelong, Vic, Australia
关键词
REGRESSION SHRINKAGE; VARIABLE SELECTION; MODEL SELECTION; LASSO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The stability matters in clinical prediction models because it makes the model to be interpretable and generalizable. It is paramount for high dimensional data, which employ sparse models with feature selection ability. We propose a new method to stabilize sparse support vector machines using intrinsic graph structure of the electronic medical records. The graph structure is exploited using the Jaccard similarity among features. Our method employs a convex function to penalize the pairwise l(infinity)-norm of connected feature coefficients in the graph. We apply the alternating direction method of multipliers to solve the proposed formulation. Our experiments are conducted on a synthetic and three real-world hospital datasets. We show that our proposed method is more stable than the state-of-the-art feature selection and classification techniques in terms of three stability measures namely, Jaccard similarity measure, Spearman's rank correlation coefficient and Kuncheva index. We further show that our method has resulted in better classification performance compared to the baselines.
引用
收藏
页码:3332 / 3337
页数:6
相关论文
共 50 条
  • [21] BLIND PREDICTION OF SHIP MANEUVERING BY USING SUPPORT VECTOR MACHINES
    Luo Wei-lin
    Zou Zao-jian
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2010, VOL 4, 2010, : 437 - 443
  • [22] Prediction of daily pan evaporation using support vector machines
    N.M.A.M Institute of Technology, NITTE, Karnataka, India
    不详
    Intl. J. Earth Sci. Eng., 1 (195-202):
  • [23] Economic Growth Prediction Using Optimized Support Vector Machines
    Emsia, Elmira
    Coskuner, Cagay
    COMPUTATIONAL ECONOMICS, 2016, 48 (03) : 453 - 462
  • [24] Transmembrane protein topology prediction using support vector machines
    Timothy Nugent
    David T Jones
    BMC Bioinformatics, 10
  • [25] Time Series Prediction Using Support Vector Machines: A Survey
    Sapankevych, Nicholas L.
    Sankar, Ravi
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (02) : 24 - 38
  • [26] Prediction of Sewer Condition Grade Using Support Vector Machines
    Mashford, John
    Marlow, David
    Tran, Dung
    May, Robert
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2011, 25 (04) : 283 - 290
  • [27] Bus arrival time prediction using support vector machines
    Yu Bin
    Yang Zhongzhen
    Yao Baozhen
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2006, 10 (04) : 151 - 158
  • [28] Economic Growth Prediction Using Optimized Support Vector Machines
    Elmira Emsia
    Cagay Coskuner
    Computational Economics, 2016, 48 : 453 - 462
  • [29] Prediction of Active Site Cleft Using Support Vector Machines
    Sonavane, Shrihari
    Chakrabarti, Pinak
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (12) : 2266 - 2273
  • [30] Transmembrane protein topology prediction using support vector machines
    Nugent, Timothy
    Jones, David T.
    BMC BIOINFORMATICS, 2009, 10