Vorticity Dynamics of Self-Propelled Swimming of 3D Bionic Fish

被引:0
|
作者
Xin, Z. Q. [1 ]
Wu, C. J. [2 ]
机构
[1] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
[2] Dalian Univ Technol, Ind Equipment & Sch Aeronaut & Astronaut, State Key Lab Struct Anal, Dalian 116024, Peoples R China
关键词
3D biomimetic fish; self-propelled swimming; adaptive multi-grid; immersed boundary; BVF;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerical simulations and control of tail-swaying swim of three-dimensional biomimetic fish in a viscous flow and the vorticity dynamics of fish swimming have been investigated in this paper, with a computational fluid dynamics package, which combines the adaptive multi-grid finite volume method and the methods of immersed boundary and volume of fluid, and the control strategy of fish motion. Using boundary vorticity-flux (BVF) theory, we have studied the mechanism of fish swimming and trace the physical root to the moving body surface. With the change of swimming speed, the effects of fish body and caudalfin on thrust, is analysed quantitatively. Finally the relationship between the forces exerted on fish body and vortex structures of fish swimming has been presented in this paper.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] Where is the rudder of a fish?: the mechanism of swimming and control of self-propelled fish school
    Wu, Chuijie
    Wang, Liang
    ACTA MECHANICA SINICA, 2010, 26 (01) : 45 - 65
  • [22] Where is the rudder of a fish?:the mechanism of swimming and control of self-propelled fish school
    Chuijie WuLiang Wang State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of Technology DalianChina School of Aeronautics and Astronautics Dalian University of Technology DalianChina Research Center for Fluid DynamicsPLA University of Science and Technology NanjingChina
    Acta Mechanica Sinica, 2010, 26 (01) : 45 - 65
  • [23] Effects of body stiffness on propulsion during fish self-propelled swimming
    Xu, MengFan
    Yu, YongLiang
    PHYSICS OF FLUIDS, 2023, 35 (07)
  • [24] Hydrodynamic Interaction of Two Self-Propelled Fish Swimming in a Tandem Arrangement
    Yang, Dewu
    Wu, Jie
    FLUIDS, 2022, 7 (06)
  • [25] STUDY ON A SELF-PROPELLED FISH SWIMMING IN VISCOUS FLUID BY A FINITE ELEMENT METHOD
    Tian, Fang-Bao
    Xu, Yuan-Qing
    Tang, Xiao-Ying
    Deng, Yu-Lin
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2013, 13 (06)
  • [26] Study on the hydrodynamic performance of a self-propelled robot fish swimming in pipelines environment
    Xie, Ou
    Zhang, Chenbo
    Shen, Can
    Li, Yufan
    Zhou, Dawei
    OCEAN ENGINEERING, 2024, 309
  • [27] Numerical study on the dynamics of freely self-propelled robotic fish
    Wan, Hong
    Wang, Chao
    Xia, Dan
    Jiang, Ming
    Wang, Xingsong
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2012, 48 (15): : 32 - 37
  • [28] Computation of self-propelled swimming in larva fishes
    Katumata, Yohei
    Müller, Ulrike K.
    Liu, Hao
    Journal of Biomechanical Science and Engineering, 2009, 4 (01): : 54 - 66
  • [29] Numerical simulation on the interaction of median fins for enhancing vortex dynamics and propulsion performance in fish self-propelled swimming
    Yang, Guang
    Li, Wen-jie
    Du, Hong-bo
    Wan, Yu
    Xiao, Yi
    Zhang, Peng
    Yang, Sheng-fa
    PHYSICS OF FLUIDS, 2024, 36 (10)
  • [30] The application of 3D design in the design of submarine self-propelled model
    Liu Ruijie
    Xiao Changrun
    Zhang Wenzhao
    ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 : 2329 - 2333