Functional equations and Weierstrass sigma-functions

被引:8
|
作者
Illarionov, A. A. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Khabarovsk Div, Far Eastern Branch, Khabarovsk, Russia
基金
俄罗斯科学基金会;
关键词
functional equation; Weierstrass sigma-function; elliptic function; addition theorem; trilinear functional equation;
D O I
10.1007/s10688-016-0159-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that if an entire function f: a", -> a", satisfies an equation of the form alpha (1)(x)beta (1)(y) + alpha (2)(x)beta (2)(y) + alpha (3)(x)beta (3)(y), x,y a C, for some alpha (j) , beta (j) : a", -> a", and there exist no and Ee for which , then f(z) = exp(Az (2) + Bz + C) a (TM) sigma (I")(z - z (1)) a (TM) sigma (I")(z - z (2)), where I" is a lattice in a",; sigma (I") is the Weierstrass sigma-function associated with I"; A,B,C, z (1), z (2) a a",; and .
引用
收藏
页码:281 / 290
页数:10
相关论文
共 50 条