Contamination and the quantitative exploitation of EELS low-loss experiments

被引:10
|
作者
Schamm, S [1 ]
Zanchi, G [1 ]
机构
[1] CNRS, CEMES, UPR 8011, F-31055 Toulouse, France
关键词
electron energy loss spectroscopy (EELS); low loss; dielectric function; optical properties; contamination; SrTiO(3);
D O I
10.1016/S0304-3991(01)00070-5
中图分类号
TH742 [显微镜];
学科分类号
摘要
Quantitative exploitation of the low-loss domain of electron energy loss spectra is based on an accurate determination of the corresponding signal intensity profile. This signal can be erroneous and contains artefacts as a result of sample contamination in the microscope, for example. The consequences of contamination on the signal intensity of the low-loss spectra are discussed. In the case of a carbonaceous contamination, a simple additional spurious signal can be considered, as has been demonstrated in the case of a Si single crystal, a highly oriented pyrolytic graphite (HOPG) and a strontium titanate single crystal (SrTiO(3)). The linear variation of the rate of contamination with time allows the implementation of a simple method based on the subtraction of the spurious signal in order to correct for the contamination effect. The relative errors induced by the carbonaceous contamination on the determination of the optical properties of SrTiO(3) are estimated. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:211 / 217
页数:7
相关论文
共 50 条
  • [1] Low-loss EELS methods
    Eljarrat A.
    Estradé S.
    Peiró F.
    [J]. Advances in Imaging and Electron Physics, 2019, 209 : 49 - 77
  • [2] Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS
    Eljarrat, Alberto
    Lopez-Conesa, Lluis
    Magen, Cesar
    Garcia-Lepetit, Noemi
    Gacevic, Zarko
    Calleja, Enrique
    Peiro, Francesca
    Estrade, Sonia
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (33) : 23264 - 23276
  • [3] Low-loss EELS of 2D boron nitride
    Nicholls, R. J.
    Perkins, J. M.
    Nicolosi, V.
    McComb, D. W.
    Nellist, P. D.
    Yates, J. R.
    [J]. ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2011 (EMAG 2011), 2012, 371
  • [4] CONTRIBUTION OF DRESSING TO LOW-LOSS EXPLOITATION OF DEPOSIT RESOURCES
    ERBEN, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE GEOLOGIE, 1977, 23 (04): : 184 - 187
  • [5] High Throughput Phase Mapping for Metrology Using Low-loss EELS
    Fu, Lianfeng
    Chen, Lifan
    Wang, Haifeng
    [J]. ISTFA 2017: CONFERENCE PROCEEDINGS FROM THE 43RD INTERNATIONAL SYMPOSIUM FOR TESTING AND FAILURE ANALYSIS, 2017, : 362 - 365
  • [6] Correlating low-loss EELS and ELNES of carbon nano-structures
    Seepujak, A
    Gutiérrez-Sosa, A
    Harvey, AJ
    Bangert, U
    Blank, VD
    Kulnitskiy, BA
    Batov, DV
    [J]. ELECTRON MICROSCOPY AND ANALYSIS 2001, 2001, (168): : 307 - 310
  • [7] The low-loss EELS spectra from radiation damaged gold nanoparticles
    Tehuacanero-Cuapa, S.
    Reyes-Gasga, J.
    Rodriguez-Gomez, A.
    Bahena, D.
    Hernandez-Calderon, I.
    Garcia-Garcia, R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2016, 120 (16)
  • [8] Waveguide modes spatially resolved by low-loss STEM-EELS
    Kordahl, David
    Alexander, Duncan T. L.
    Dwyer, Christian
    [J]. PHYSICAL REVIEW B, 2021, 103 (13)
  • [9] Low-loss EELS study of oxide-covered aluminum nanospheres
    Stockli, T
    Stadelmann, P
    Chatelain, A
    [J]. MICROSCOPY MICROANALYSIS MICROSTRUCTURES, 1997, 8 (02): : 145 - 155
  • [10] Electronic properties of black phosphorus using monochromated low-loss EELS
    Benabdallah, I.
    Auad, Y.
    Sigle, W.
    van Aken, P. A.
    Kociak, M.
    Benaissa, M.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2021, 265