Synergistic use of Landsat 8 OLI image and airborne LiDAR data for above-ground biomass estimation in tropical lowland rainforests

被引:31
|
作者
Phua, Mui-How [1 ]
Johari, Shazrul Azwan [1 ]
Wong, Ong Cieh [1 ]
Ioki, Keiko [1 ]
Mahali, Maznah [1 ]
Nilus, Reuben [2 ]
Coomes, David A. [3 ]
Maycock, Colin R. [1 ]
Hashim, Mazlan [4 ]
机构
[1] Univ Malaysia Sabah, Forestry Complex, Fac Sci & Nat Resources, Sabah, Malaysia
[2] Sabah Forestry Dept, Forest Res Ctr, POB 1407, Sandakan 90715, Sabah, Malaysia
[3] Univ Cambridge, Dept Plant Sci, Downing St, Cambridge CB2 3EA, England
[4] Univ Teknol Malaysia, Res Inst Sustainable Environm, Skudai 91310, Johor Bahru, Malaysia
关键词
Tropical forest; Above-ground biomass; Landsat; 8; OLI; Airborne LiDAR; Borneo; REDD; REMOTE-SENSING DATA; TREE COMMUNITY COMPOSITION; LEAF-AREA INDEX; TM DATA; VEGETATION INDEXES; BRAZILIAN AMAZON; WOOD DENSITY; TANDEM-X; CARBON; TEXTURE;
D O I
10.1016/j.foreco.2017.10.007
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Developing a robust and cost-effective method for accurately estimating tropical forest's carbon pool over large area is a fundamental requirement for the implementation of Reducing Emissions from Deforestation and forest Degradation (REDD +). This study aims at examining the independent and combined use of airborne LiDAR and Landsat 8 Operational Land Imager (OLI) data to accurately estimate the above-ground biomass (AGB) of primary tropical rainforests in Sabah, Malaysia. Thirty field plots were established in three types of lowland rainforests: alluvial, sandstone hill and heath forests that represent a wide range of AGB density and stand structure. We derived the height percentile and laser penetration variables from the airborne LiDAR and calculated the vegetation indices, tasseled cap transformation values, and the texture measures from Landsat 8 OLI data. We found that there are moderate correlations between the AGB and laser penetration variables from airborne LiDAR data (r = -0.411 to -0.790). For Landsat 8 OLI data, the 6 vegetation indices and the 46 texture measures also significantly correlated with the AGB (r = 0.366-0.519). Stepwise multiple regression analysis was performed to establish the estimation models for independent and combined use of airborne LiDAR and Landsat 8 OLI data. The results showed that the model based on a combination of the two remote sensing data achieved the highest accuracy (R-adj(2) = 0.81, RMSE = 17.36%) whereas the models using Landsat 8 OLI data airborne LiDAR data independently obtained the moderate accuracy (R-adj(2) = 0.52, RMSE = 24.22% and R-adj(2) = 0.63, RMSE = 25.25%, respectively). Our study indicated that texture measures from Landsat 8 OLI data provided useful information for AGB estimation and synergistic use of Landsat 8 OLI and airborne LiDAR data could improve the AGB estimation of primary tropical rainforest.
引用
收藏
页码:163 / 171
页数:9
相关论文
共 50 条
  • [31] Estimation of above-ground forest biomass using metrics based on Gaussian decomposition of waveform lidar data
    Zhuang, Wei
    Mountrakis, Giorgos
    Wiley, John J., Jr.
    Beier, Colin M.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (07) : 1871 - 1889
  • [32] Canopy Cover Estimation in Lowland Forest in South Sumatera, Using LiDAR and Landsat 8 OLI imagery
    Saleh, Muhammad Buce
    Dewi, Rosima Wati
    Prasetyo, Lilik Budi
    Santi, Nitya Ade
    JURNAL MANAJEMEN HUTAN TROPIKA, 2021, 27 (01): : 50 - 58
  • [33] Above-ground biomass change estimation using national forest inventory data with Sentinel-2 and Landsat
    Puliti, S.
    Breidenbach, J.
    Schumacher, J.
    Hauglin, M.
    Klingenberg, T. F.
    Astrup, R.
    REMOTE SENSING OF ENVIRONMENT, 2021, 265
  • [34] Grass allometry and estimation of above-ground biomass in tropical alpine tussock grasslands
    Oliveras, Immaculada
    van der Eynden, Maarten
    Malhi, Yadvinder
    Cahuana, Nelson
    Menor, Carlos
    Zamora, Flor
    Haugaasen, Torbjorn
    AUSTRAL ECOLOGY, 2014, 39 (04) : 408 - 415
  • [35] Tree Diametric Relationships and Their Implications for Estimation of Above-ground Biomass in a Tropical Rainforest
    Fonseca, Nathan Castro
    Alves Cunha, Jessica Stefane
    Santos da Cunha, Jose Alberes
    Barros Santos, Jose Nailson
    Rodrigues, Lucia dos Santos
    Borges Lins-e-Silva, Ana Carolina
    JOURNAL OF SUSTAINABLE FORESTRY, 2022, 41 (10) : 999 - 1013
  • [36] Spatial Downscaling of Forest Above-Ground Biomass Distribution Patterns Based on Landsat 8 OLI Images and a Multiscale Geographically Weighted Regression Algorithm
    Wang, Nan
    Sun, Min
    Ye, Junhong
    Wang, Jingyi
    Liu, Qinqin
    Li, Mingshi
    FORESTS, 2023, 14 (03):
  • [37] Estimation of above-ground biomass and delineation of vegetation of tropical forests using EOS-04 data
    Das, Anup K.
    Patnaik, C.
    Maity, Saroj
    Praveen, M. S. S.
    Reddy, R. Suraj
    Rajashekar, G.
    Chaube, Nilima R.
    Mahajan, Seema
    Jain, Yashraj
    Bhavsar, Dhruval
    Chakraborty, Kasturi
    Putrevu, Deepak
    CURRENT SCIENCE, 2024, 126 (09): : 1088 - 1101
  • [38] AIRBORNE LIDAR MEASUREMENTS TO ESTIMATE TROPICAL PEAT SWAMP FOREST ABOVE GROUND BIOMASS
    Ballhorn, Uwe
    Jubanski, Juilson
    Kronseder, Karin
    Siegert, Florian
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1660 - 1663
  • [39] Inversion study of the meadow steppe above-ground biomass based on ground and airborne hyperspectral data
    Wen, Hefei
    Zhang, Yong
    Wang, Xiumei
    Wang, Ruochen
    Wu, Wenbo
    Dong, Jianjun
    GEOCARTO INTERNATIONAL, 2024, 39 (01)
  • [40] Airborne Synthetic Aperture Radar for Estimating Above-ground Woody Biomass in Tropical Savanna Woodland
    Viergever, Karin M.
    Woodhouse, Iain H.
    Stuart, Neil
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 3595 - 3598