Modelling interacting cracks through a level set using the element-free Galerkin method

被引:21
|
作者
Muthu, N. [1 ,2 ]
Maiti, S. K. [3 ]
Yan, Wenyi [4 ]
Falzon, B. G. [5 ]
机构
[1] Indian Inst Technol, IITB Monash Res Acad, CSE Bldg 2nd Floor, Powai 400076, India
[2] IIT Guwahati, Dept Mech Engn, Gauhati 781039, India
[3] Indian Inst Technol, Dept Mech Engn, Powai 400076, India
[4] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
[5] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland
关键词
Element-free Galerkin method; Multiple cracks; Level set method; Crack-crack interaction; Interface cracks; Stress intensity factor; EXTENDED FINITE-ELEMENT; ENRICHED WEIGHT-FUNCTIONS; MESHLESS METHODS; MULTIPLE CRACKS; PROPAGATION; GROWTH; STRESS; APPROXIMATIONS; SIFS;
D O I
10.1016/j.ijmecsci.2017.10.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A multiple crack weight technique with a level set method is proposed to model multiple cracks using a coarse meshfree nodal discretization. A new level-set structure is presented to handle multiple cracks and their propagation using the maximum tangential principal stress criterion. The level sets are updated with respect to the new crack tip positions. The problem of modelling interacting cracks in isotropic and bi-materials is studied using a new variant of the element-free Galerkin method. The stress intensity factors (SIFs) and energy release rates for interacting cracks in isotropic and homogenous materials, including a crack at a bi-material interface are determined using the standard interaction integral. Case studies involving crack-crack interactions, doubly and triply kinked cracks are analysed to demonstrate the simplicity and the effectiveness of the proposed approach. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 50 条
  • [21] Analysis of Shallow Water Problems Using Element-Free Galerkin Method
    Ali Rahmani Firoozjaee
    Farzad Farvizi
    Ehsan Hendi
    International Journal of Civil Engineering, 2017, 15 : 223 - 230
  • [22] Topology optimization of compliant mechanisms using element-free Galerkin method
    Wang, Yu
    Luo, Zhen
    Wu, Jinglai
    Zhang, Nong
    ADVANCES IN ENGINEERING SOFTWARE, 2015, 85 : 61 - 72
  • [23] Topology Optimization of Structures Using an Adaptive Element-Free Galerkin Method
    Du, Yixian
    Yan, Shuangqiao
    Chen, De
    Long, Qingping
    Li, Xiang
    ADVANCES IN GLOBAL OPTIMIZATION, 2015, 95 : 241 - 249
  • [24] Analysis of Shallow Water Problems Using Element-Free Galerkin Method
    Firoozjaee, Ali Rahmani
    Farvizi, Farzad
    Hendi, Ehsan
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2017, 15 (2A) : 223 - 230
  • [25] Topology optimization using the improved element-free Galerkin method for elasticity
    Wu, Yi
    Ma, Yong-Qi
    Feng, Wei
    Cheng, Yu-Min
    CHINESE PHYSICS B, 2017, 26 (08)
  • [26] Topology optimization using the improved element-free Galerkin method for elasticity
    吴意
    马永其
    冯伟
    程玉民
    Chinese Physics B, 2017, (08) : 36 - 43
  • [27] Analysis of harmonic electromagnetic field using element-free Galerkin method
    Yang, E. H.
    Wang, S. G.
    Mo, J. Q.
    Liang, Q. H.
    Xu, W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2011, 27 (06) : 848 - 859
  • [28] AN EFFICIENT PARTIAL DOMAIN ENRICHED ELEMENT-FREE GALERKIN METHOD CRITERION FOR CRACKS IN NONCONVEX DOMAINS
    Singh, I. V.
    Mishra, B. K.
    Pant, Mohit
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2011, 2 (03) : 317 - 336
  • [29] Characterizing Flexoelectricity in Composite Material Using the Element-Free Galerkin Method
    He, Bo
    Javvaji, Brahmanandam
    Zhuang, Xiaoying
    ENERGIES, 2019, 12 (02)
  • [30] An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method
    Singh, I. V.
    Mishra, B. K.
    Pant, Mohit
    INTERNATIONAL JOURNAL OF FRACTURE, 2011, 167 (02) : 157 - 171