Modelling interacting cracks through a level set using the element-free Galerkin method

被引:21
|
作者
Muthu, N. [1 ,2 ]
Maiti, S. K. [3 ]
Yan, Wenyi [4 ]
Falzon, B. G. [5 ]
机构
[1] Indian Inst Technol, IITB Monash Res Acad, CSE Bldg 2nd Floor, Powai 400076, India
[2] IIT Guwahati, Dept Mech Engn, Gauhati 781039, India
[3] Indian Inst Technol, Dept Mech Engn, Powai 400076, India
[4] Monash Univ, Dept Mech & Aerosp Engn, Clayton, Vic 3800, Australia
[5] Queens Univ Belfast, Sch Mech & Aerosp Engn, Belfast BT9 5AH, Antrim, North Ireland
关键词
Element-free Galerkin method; Multiple cracks; Level set method; Crack-crack interaction; Interface cracks; Stress intensity factor; EXTENDED FINITE-ELEMENT; ENRICHED WEIGHT-FUNCTIONS; MESHLESS METHODS; MULTIPLE CRACKS; PROPAGATION; GROWTH; STRESS; APPROXIMATIONS; SIFS;
D O I
10.1016/j.ijmecsci.2017.10.009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A multiple crack weight technique with a level set method is proposed to model multiple cracks using a coarse meshfree nodal discretization. A new level-set structure is presented to handle multiple cracks and their propagation using the maximum tangential principal stress criterion. The level sets are updated with respect to the new crack tip positions. The problem of modelling interacting cracks in isotropic and bi-materials is studied using a new variant of the element-free Galerkin method. The stress intensity factors (SIFs) and energy release rates for interacting cracks in isotropic and homogenous materials, including a crack at a bi-material interface are determined using the standard interaction integral. Case studies involving crack-crack interactions, doubly and triply kinked cracks are analysed to demonstrate the simplicity and the effectiveness of the proposed approach. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 215
页数:13
相关论文
共 50 条
  • [1] Treatment of cracks using an element-free Galerkin method
    Si, Jianhui
    Jian, Zheng
    Li, Jiuhong
    Tumu Gongcheng Xuebao/China Civil Engineering Journal, 2006, 39 (04): : 6 - 8
  • [2] Consistent element-free Galerkin method
    Duan, Qinglin
    Gao, Xin
    Wang, Bingbing
    Li, Xikui
    Zhang, Hongwu
    Belytschko, Ted
    Shao, Yulong
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 99 (02) : 79 - 101
  • [3] Element-Free Galerkin modelling of composite damage
    Guiamatsia, I.
    Falzon, B. G.
    Davies, G. A. O.
    Iannucci, L.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (15-16) : 2640 - 2648
  • [4] An element-free Galerkin method for electromechanical coupled analysis in piezoelectric materials with cracks
    Li, Xiao Lin
    Zhou, Li Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (02)
  • [5] Nonlocal damage modelling using the element-free Galerkin method in the frame of finite strains
    Pan, Xiaofei
    Yuan, Huang
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 46 (03) : 660 - 666
  • [6] Analysis of plates and laminates using the element-free Galerkin method
    Belinha, J.
    Dinis, L. M. J. S.
    COMPUTERS & STRUCTURES, 2006, 84 (22-23) : 1547 - 1559
  • [7] Modeling microwave NDE using the element-free Galerkin method
    Zeng, ZW
    Shanker, B
    Udpa, L
    Electromagnetic Nondestructive Evaluation (IX), 2005, 25 : 41 - 48
  • [8] A coupled finite element - Element-free Galerkin method
    Belytschko, T
    Organ, D
    Krongauz, Y
    COMPUTATIONAL MECHANICS, 1995, 17 (03) : 186 - 195
  • [9] Model based inversion using the element-free Galerkin method
    Liu, Xin
    Deng, Yiming
    Zeng, Zhiwei
    Udpa, Lalita
    Knopp, Jeremy S.
    MATERIALS EVALUATION, 2008, 66 (07) : 740 - 746
  • [10] Modelling and simulation of the superelastic behaviour of shape memory alloys using the element-free Galerkin method
    Ren, J
    Liew, KM
    Meguid, SA
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2002, 44 (12) : 2393 - 2413