Dirichlet polynomials and a moment problem

被引:0
|
作者
Chavan, Sameer [1 ]
Sahu, Chaman Kumar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
关键词
Dirichlet polynomial; Moment functional; Completely monotone function; Bernstein function; SERIES;
D O I
10.1007/s43037-022-00208-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a linear functional L defined on the space D[s] of Dirichlet polynomials with real coefficients and the set D+ [s] of non-negative elements in D[s]. An analogue of the Riesz-Haviland theorem in this context asks: What are all D+ [s]-positive linear functionals L, which are moment functionals? Since the space D[s], when considered as a subspace of C([0, infinity), R), fails to be an adapted space in the sense of Choquet, the general form of Riesz-Haviland theorem is not applicable in this situation. In an attempt to answer the forgoing question, we arrive at the notion of a moment sequence, which we call the Hausdorff log-moment sequence. Apart from an analogue of the Riesz-Haviland theorem, we show that any Hausdorff log-moment sequence is a linear combination of {1, 0, ..., } and {f(log(n)}(n >= 1) for a completely monotone function f : [0, infinity) -> [0, infinity). Moreover, such an f is uniquely determined by the sequence in question.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] The tracial moment problem and trace-optimization of polynomials
    Burgdorf, Sabine
    Cafuta, Kristijan
    Klep, Igor
    Povh, Janez
    MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) : 557 - 578
  • [22] SOLUTION OF THE HAUSDORFF MOMENT PROBLEM BY THE USE OF POLLACZEK POLYNOMIALS
    VIANO, GA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (02) : 410 - 427
  • [23] Trace-positive polynomials and the quartic tracial moment problem
    Burgdorf, Sabine
    Klep, Igor
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 721 - 726
  • [24] Reproducing Kernel Hilbert Spaces, Polynomials, and the Classical Moment Problem*
    Dette, Holger
    Zhigljavsky, Anatoly A.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04): : 1589 - 1614
  • [25] On Dirichlet characters of polynomials
    Zhang, WP
    Yi, Y
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 469 - 473
  • [26] ON DIRICHLET CHARACTERS OF POLYNOMIALS
    NARANJANI, AM
    ACTA ARITHMETICA, 1984, 43 (03) : 245 - 251
  • [27] Dirichlet Polynomials and Entropy
    Spivak, David, I
    Hosgood, Timothy
    ENTROPY, 2021, 23 (08)
  • [28] ZEROS OF DIRICHLET POLYNOMIALS
    Roy, Arindam
    Vatwani, Akshaa
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) : 643 - 661
  • [29] 2 REMARKS ON DIRICHLET SERIES AND DIRICHLET POLYNOMIALS
    DEUTSCH, C
    ANNALES DE L INSTITUT FOURIER, 1974, 24 (03) : 165 - 169
  • [30] HARMONIC POLYNOMIALS AND THE DIRICHLET PROBLEM FOR THE BALL OF THE HEISENBERG-GROUP WITH RADIAL SYMMETRY
    GAVEAU, B
    GREINER, P
    VAUTHIER, J
    BULLETIN DES SCIENCES MATHEMATIQUES, 1984, 108 (04): : 337 - 354