Dirichlet polynomials and a moment problem

被引:0
|
作者
Chavan, Sameer [1 ]
Sahu, Chaman Kumar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
关键词
Dirichlet polynomial; Moment functional; Completely monotone function; Bernstein function; SERIES;
D O I
10.1007/s43037-022-00208-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a linear functional L defined on the space D[s] of Dirichlet polynomials with real coefficients and the set D+ [s] of non-negative elements in D[s]. An analogue of the Riesz-Haviland theorem in this context asks: What are all D+ [s]-positive linear functionals L, which are moment functionals? Since the space D[s], when considered as a subspace of C([0, infinity), R), fails to be an adapted space in the sense of Choquet, the general form of Riesz-Haviland theorem is not applicable in this situation. In an attempt to answer the forgoing question, we arrive at the notion of a moment sequence, which we call the Hausdorff log-moment sequence. Apart from an analogue of the Riesz-Haviland theorem, we show that any Hausdorff log-moment sequence is a linear combination of {1, 0, ..., } and {f(log(n)}(n >= 1) for a completely monotone function f : [0, infinity) -> [0, infinity). Moreover, such an f is uniquely determined by the sequence in question.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Dirichlet polynomials and a moment problem
    Sameer Chavan
    Chaman Kumar Sahu
    Banach Journal of Mathematical Analysis, 2022, 16
  • [2] DIRICHLET PROBLEM FOR POLYNOMIALS ON THE UNIT DISK
    Sertoz, All Sinan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (03): : 415 - 420
  • [3] The complex moment problem of Dirichlet type
    Szafraniec, Franciszek Hugon
    Wojtylak, Michal
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2021, 32 (5-8) : 620 - 631
  • [5] On a moment problem associated with Chebyshev polynomials
    Castillo, K.
    Lamblem, R. L.
    Ranga, A. Sri
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9571 - 9574
  • [6] Density of polynomials and the Hamburger moment problem
    Borichev, A
    Sodin, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (01): : 11 - 16
  • [7] SOLUTION OF THE DIRICHLET PROBLEM FOR THE ELLIPSE BY INTERPOLATING HARMONIC POLYNOMIALS
    WALSH, JL
    JOURNAL OF MATHEMATICS AND MECHANICS, 1960, 9 (02): : 193 - 196
  • [8] ORTHOGONAL POLYNOMIALS AND A DIRICHLET PROBLEM RELATED TO THE HILBERT TRANSFORM
    DUNKL, CF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1985, 88 (02): : 147 - 171
  • [9] Szego polynomials and the truncated trigonometric moment problem
    Li, X.
    Ranga, A. Sri
    RAMANUJAN JOURNAL, 2006, 12 (03): : 461 - 472
  • [10] Szegő polynomials and the truncated trigonometric moment problem
    X. Li
    A. Sri Ranga
    The Ramanujan Journal, 2006, 12 : 461 - 472