Graph-based High-Order Relation Discovery for Fine-grained Recognition

被引:68
|
作者
Zhao, Yifan [1 ]
Yan, Ke [2 ]
Huang, Feiyue [2 ]
Li, Jia [1 ,3 ]
机构
[1] Beihang Univ, State Key Lab Virtual Real Technol & Syst, SCSE, Beijing, Peoples R China
[2] Tencent Youtu Lab, Shanghai, Peoples R China
[3] Peng Cheng Lab, Shenzhen, Peoples R China
来源
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021 | 2021年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR46437.2021.01483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained object recognition aims to learn effective features that can identify the subtle differences between visually similar objects. Most of the existing works tend to amplify discriminative part regions with attention mechanisms. Besides its unstable performance under complex backgrounds, the intrinsic interrelationship between different semantic features is less explored. Toward this end, we propose an effective graph-based relation discovery approach to build a contextual understanding of high-order relationships. In our approach, a high-dimensional feature bank is first formed and jointly regularized with semantic- and positional-aware high-order constraints, endowing rich attributes to feature representations. Second, to overcome the high-dimension curse, we propose a graph-based semantic grouping strategy to embed this high-order tensor bank into a low-dimensional space. Meanwhile, a group-wise learning strategy is proposed to regularize the features focusing on the cluster embedding center. With the collaborative learning of three modules, our module is able to grasp the stronger contextual details of fine-grained objects. Experimental evidence demonstrates our approach achieves new state-of-the-art on 4 widely-used fine-grained object recognition benchmarks.
引用
收藏
页码:15074 / 15083
页数:10
相关论文
共 50 条
  • [31] Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II, 2019, 11845 : 332 - 344
  • [32] SAWSDL Service Discovery Based on Fine-Grained Data Semantics
    Wei, Dengping
    Wang, Ting
    Wang, Ji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (03): : 525 - 534
  • [33] Fine-Grained Temporal Relation Extraction
    Vashishtha, Siddharth
    Van Durme, Benjamin
    White, Aaron Steven
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 2906 - 2919
  • [34] Webly Supervised Fine-Grained Image Recognition with Graph Representation and Metric Learning
    Lin, Jianman
    Lin, Jiantao
    Gao, Yuefang
    Yang, Zhijing
    Chen, Tianshui
    ELECTRONICS, 2022, 11 (24)
  • [35] FINE-GRAINED AND LAYERED OBJECT RECOGNITION
    Wu, Yang
    Zheng, Nanning
    Liu, Yuanliu
    Yuan, Zejian
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (02)
  • [36] SELECTIVE PARTS FOR FINE-GRAINED RECOGNITION
    Li, Dong
    Li, Yali
    Wang, Shengjin
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 922 - 926
  • [37] Deep LSAC for Fine-Grained Recognition
    Lin, Di
    Wang, Yi
    Liang, Lingyu
    Li, Ping
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (01) : 200 - 214
  • [38] FgER: Fine-Grained Entity Recognition
    Abhishek
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8008 - 8009
  • [39] A dataset for fine-grained seed recognition
    Yuan, Min
    Lv, Ningning
    Dong, Yongkang
    Hu, Xiaowen
    Lu, Fuxiang
    Zhan, Kun
    Shen, Jiacheng
    Wu, Xiaolin
    Zhu, Liye
    Xie, Yufei
    SCIENTIFIC DATA, 2024, 11 (01)
  • [40] GRAPH FINE-GRAINED CONTRASTIVE REPRESENTATION LEARNING
    Tang, Hui
    Liang, Xun
    Guo, Yuhui
    Zheng, Xiangping
    Wu, Bo
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3478 - 3482