CHROMSTRUCT 4: A Python']Python Code to Estimate the Chromatin Structure from Hi-C Data

被引:9
|
作者
Caudai, Claudia [1 ]
Salerno, Emanuele [1 ]
Zoppe, Monica [2 ]
Merelli, Ivan [3 ]
Tonazzini, Anna [1 ]
机构
[1] Natl Res Council Italy, Inst Informat Sci & Technol, I-56127 Pisa, Italy
[2] Natl Res Council Italy, Inst Clin Physiol, I-56124 Pisa, Italy
[3] Natl Res Council Italy, Inst Biomed Technol, I-20090 Milan, Italy
关键词
Chromosome conformation capture; chromatin configuration; Bayesian estimation; DATA REVEALS; GENOME; ORGANIZATION; PRINCIPLES;
D O I
10.1109/TCBB.2018.2838669
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A method and a stand-alone Python code to estimate the 3D chromatin structure from chromosome conformation capture data are presented. The method is based on a multiresolution, modified-bead-chain chromatin model, evolved through quaternion operators in a Monte Carlo sampling. The solution space to be sampled is generated by a score function with a data-fit part and a constraint part where the available prior knowledge is implicitly coded. The final solution is a set of 3D configurations that are compatible with both the data and the prior knowledge. The iterative code, provided here as additional material, is equipped with a graphical user interface and stores its results in standard-format files for 3D visualization. We describe the mathematical-computational aspects of the method and explain the details of the code. Some experimental results are reported, with a demonstration of their fit to the data.
引用
下载
收藏
页码:1867 / 1878
页数:12
相关论文
共 50 条
  • [41] FIREcaller: Detecting frequently interacting regions from Hi-C data
    Crowley, Cheynna
    Yang, Yuchen
    Qiu, Yunjiang
    Hu, Benxia
    Abnousi, Armen
    Lipinski, Jakub
    Plewczynski, Dariusz
    Wu, Di
    Won, Hyejung
    Ren, Bing
    Hu, Ming
    Li, Yun
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 355 - 362
  • [42] Unsupervised Learning from Noisy Networks with Applications to Hi-C Data
    Wang, Bo
    Zhu, Junjie
    Ursu, Oana
    Pourshafeie, Armin
    Batzoglou, Serafim
    Kundaje, Anshul
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [43] Modeling DNA Structure with Different Chromatin Compaction in TOPAS-NBio Using Hi-C Representations
    Yoo, D.
    Henthron, N.
    Ingram, S.
    Merchant, M.
    Kirkby, K.
    Warmenhoven, J.
    McNamara, A.
    Held, K.
    Paganetti, H.
    Schuemann, J.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [44] TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data
    Liu, Erhu
    Lyu, Hongqiang
    Peng, Qinke
    Liu, Yuan
    Wang, Tian
    Han, Jiuqiang
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [45] TADfit is a multivariate linear regression model for profiling hierarchical chromatin domains on replicate Hi-C data
    Erhu Liu
    Hongqiang Lyu
    Qinke Peng
    Yuan Liu
    Tian Wang
    Jiuqiang Han
    Communications Biology, 5
  • [46] Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data
    Miko, Henriette
    Qiu, Yunjiang
    Gaertner, Bjoern
    Sander, Maike
    Ohler, Uwe
    BMC GENOMICS, 2021, 22 (01)
  • [47] Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data
    William W. Greenwald
    He Li
    Erin N. Smith
    Paola Benaglio
    Naoki Nariai
    Kelly A. Frazer
    BMC Bioinformatics, 18
  • [48] Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data
    Greenwald, William W.
    Li, He
    Smith, Erin N.
    Benaglio, Paola
    Nariai, Naoki
    Frazer, Kelly A.
    BMC BIOINFORMATICS, 2017, 18
  • [49] Perspectives for the reconstruction of 3D chromatin conformation using single cell Hi-C data
    Kos, Pavel I.
    Galitsyna, Aleksandra A.
    Ulianov, Sergey V.
    Gelfand, Mikhail S.
    Razin, Sergey V.
    Chertovich, Alexander V.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (11)
  • [50] Inferring time series chromatin states for promoter-enhancer pairs based on Hi-C data
    Henriette Miko
    Yunjiang Qiu
    Bjoern Gaertner
    Maike Sander
    Uwe Ohler
    BMC Genomics, 22