CHROMSTRUCT 4: A Python']Python Code to Estimate the Chromatin Structure from Hi-C Data

被引:9
|
作者
Caudai, Claudia [1 ]
Salerno, Emanuele [1 ]
Zoppe, Monica [2 ]
Merelli, Ivan [3 ]
Tonazzini, Anna [1 ]
机构
[1] Natl Res Council Italy, Inst Informat Sci & Technol, I-56127 Pisa, Italy
[2] Natl Res Council Italy, Inst Clin Physiol, I-56124 Pisa, Italy
[3] Natl Res Council Italy, Inst Biomed Technol, I-20090 Milan, Italy
关键词
Chromosome conformation capture; chromatin configuration; Bayesian estimation; DATA REVEALS; GENOME; ORGANIZATION; PRINCIPLES;
D O I
10.1109/TCBB.2018.2838669
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A method and a stand-alone Python code to estimate the 3D chromatin structure from chromosome conformation capture data are presented. The method is based on a multiresolution, modified-bead-chain chromatin model, evolved through quaternion operators in a Monte Carlo sampling. The solution space to be sampled is generated by a score function with a data-fit part and a constraint part where the available prior knowledge is implicitly coded. The final solution is a set of 3D configurations that are compatible with both the data and the prior knowledge. The iterative code, provided here as additional material, is equipped with a graphical user interface and stores its results in standard-format files for 3D visualization. We describe the mathematical-computational aspects of the method and explain the details of the code. Some experimental results are reported, with a demonstration of their fit to the data.
引用
下载
收藏
页码:1867 / 1878
页数:12
相关论文
共 50 条
  • [1] Cooltools: Enabling high-resolution Hi-C analysis in Python']Python
    Abdennur, Nezar
    Abraham, Sameer
    Fudenberg, Geoffrey
    Flyamer, Ilya M.
    Galitsyna, Aleksandra A.
    Goloborodko, Anton
    Imakaev, Maxim
    Oksuz, Betul A.
    Venev, Sergey V.
    Xiao, Yao
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (05)
  • [2] Rich Chromatin Structure Prediction from Hi-C Data
    Malik, Laraib
    Patro, Rob
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2019, 16 (05) : 1448 - 1458
  • [3] Rich Chromatin Structure Prediction from Hi-C Data
    Malik, Laraib
    Patro, Rob
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 184 - 193
  • [4] HiCRep.py: fast comparison of Hi-C contact matrices in Python']Python
    Lin, Dejun
    Sanders, Justin
    Noble, William Stafford
    BIOINFORMATICS, 2021, 37 (18) : 2996 - 2997
  • [5] Complementing Hi-C information for 3D chromatin reconstruction by ChromStruct
    Caudai, Claudia
    Salerno, Emanuele
    FRONTIERS IN BIOINFORMATICS, 2024, 3
  • [6] Python']Python Code and Illustrative Crisis Management Data from Twitter
    Wang, Yen-Yao
    Wang, Tawei
    JOURNAL OF INFORMATION SYSTEMS, 2022, 36 (03) : 211 - 217
  • [7] Bayesian Reconstruction of Chromatin Conformation from FISH and Hi-C Data
    Pan, Keyao
    Bathe, Mark
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 581A - 581A
  • [8] Extracting multi-way chromatin contacts from Hi-C data
    Liu, Lei
    Zhang, Bokai
    Hyeon, Changbong
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (12)
  • [9] Fine mapping chromatin contacts in capture Hi-C data
    Christiaan Q Eijsbouts
    Oliver S Burren
    Paul J Newcombe
    Chris Wallace
    BMC Genomics, 20
  • [10] Fine mapping chromatin contacts in capture Hi-C data
    Eijsbouts, Christiaan Q.
    Burren, Oliver S.
    Newcombe, Paul J.
    Wallace, Chris
    BMC GENOMICS, 2019, 20 (1)