Unimodality of Hitting Times for Stable Processes

被引:2
|
作者
Letemplier, Julien [1 ]
Simon, Thomas [1 ,2 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
来源
关键词
Hitting time; Kanter random variable; Self-decomposability; Size; bias; Stable Levy process; Unimodality; LEVY PROCESSES; DENSITIES; POINTS;
D O I
10.1007/978-3-319-11970-0_13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the hitting times for points of real alpha-stable Levy processes (1 < alpha <= 2) are unimodal random variables. The argument relies on strong unimodality and several recent multiplicative identities in law. In the symmetric case we use a factorization of Yano et al. (Semin Probab XLII: 187-227, 2009), whereas in the completely asymmetric case we apply an identity of the second author (Simon, Stochastics 83( 2):203-214, 2011). The method extends to the general case thanks to a fractional moment evaluation due to Kuznetsov et al. (Electr. J. Probab. 19:30, 1-26, 2014), for which we also provide a short independent proof.
引用
收藏
页码:345 / 357
页数:13
相关论文
共 50 条
  • [21] Weak Poincaré inequalities and hitting times for jump processes
    Huihui Cheng
    Hongde Xiao
    Journal of Inequalities and Applications, 2016
  • [22] ASYMPTOTIC EXPANSIONS FOR THE FIRST HITTING TIMES OF BESSEL PROCESSES
    Hamana, Yuji
    Kaikura, Ryo
    Shinozaki, Kosuke
    OPUSCULA MATHEMATICA, 2021, 41 (04) : 509 - 537
  • [23] LEVY PROCESSES - ABSOLUTE CONTINUITY OF HITTING TIMES FOR POINTS
    MONRAD, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1976, 37 (01): : 43 - 49
  • [24] Sharp approximation and hitting times for stochastic invasion processes
    Bansaye, Vincent
    Erny, Xavier
    Meleard, Sylvie
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 178
  • [25] THE PROBABILITY DISTRIBUTIONS OF THE FIRST HITTING TIMES OF BESSEL PROCESSES
    Hamana, Yuji
    Matsumoto, Hiroyuki
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (10) : 5237 - 5257
  • [26] Weak Poincar, inequalities and hitting times for jump processes
    Cheng, Huihui
    Xiao, Hongde
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [28] UNIMODALITY OF STABLE DENSITIES
    KANTER, M
    ANNALS OF PROBABILITY, 1976, 4 (06): : 1006 - 1008
  • [29] Asymptotics of the probability distributions of the first hitting times of Bessel processes
    Hamana, Yuji
    Matsumoto, Hiroyuki
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 5
  • [30] Hitting Times of Points and Intervals for Symmetric L,vy Processes
    Grzywny, Tomasz
    Ryznar, Michal
    POTENTIAL ANALYSIS, 2017, 46 (04) : 739 - 777