Multipartite reduction criteria for separability

被引:14
|
作者
Hall, W [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
来源
PHYSICAL REVIEW A | 2005年 / 72卷 / 02期
关键词
D O I
10.1103/PhysRevA.72.022311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The reduction criterion is a well-known necessary condition for separable states, and states violating this condition are entangled and also 1-distillable. In this paper we introduce a set of necessary conditions for separability of multipartite states, obtained from a set of positive but not completely positive maps. These conditions can be thought of as generalizations of the reduction criterion to multipartite systems. We use tripartite Werner states as an example to investigate the entanglement detecting powers of some of these conditions, and we also look at what these conditions mean in terms of distillation. Finally, we show that these maps can be used to give a partial solution to the subsystem problem, as described by Butterley et al.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Necessary and sufficient conditions of separability for multipartite pure states
    Li Da-Fa
    Li Xiang-Rong
    Huang Hong-Tao
    Li Xin-Xin
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (05) : 1211 - 1216
  • [32] A note on the degree conjecture for separability of multipartite quantum states
    Wang, Zhen
    Zhao, Ming-Jing
    Wang, Zhi-Xi
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (08)
  • [33] Necessary and Sufficient Conditions of Separability for Multipartite Pure States
    LI Da-Fa~1 LI Xiang-Rong~2 HUANG Hong-Tao~3 LI Xin-Xin~41 Department of Mathematical Sciences
    Communications in Theoretical Physics, 2008, 49 (05) : 1211 - 1216
  • [34] Some characterizations of fully separability for multipartite quantum states
    Yinzhu Wang
    Huimin Wu
    Fangyu Zhou
    Lili Yang
    Donghua Yan
    International Journal of Theoretical Physics, 2022, 61
  • [35] Criterion for k-separability in mixed multipartite states
    Gabriel, Andreas
    Hiesmayr, Beatrix C.
    Huber, Marcus
    Quantum Information and Computation, 2010, 10 (9-10): : 829 - 836
  • [36] The generalized partial transposition criterion for separability of multipartite quantum states
    Chen, K
    Wu, LA
    PHYSICS LETTERS A, 2002, 306 (01) : 14 - 20
  • [37] Separability of heterogeneous quantum systems using multipartite concurrence and tangle
    Tanasescu, Andrei
    Popescu, Pantelimon George
    QUANTUM INFORMATION PROCESSING, 2021, 20 (02)
  • [38] Necessary conditions for classifying m-separability of multipartite entanglements
    Xu, Wen
    Zhu, Chuan-Jie
    Zheng, Zhu-Jun
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2020, 19 (07)
  • [39] Separability of heterogeneous multipartite quantum systems using Bloch Vectors
    Andrei Tănăsescu
    Pantelimon George Popescu
    Quantum Information Processing, 2020, 19
  • [40] Separability of heterogeneous multipartite quantum systems using Bloch Vectors
    Tanasescu, Andrei
    Popescu, Pantelimon George
    QUANTUM INFORMATION PROCESSING, 2020, 19 (06)