Optimal structural design under stochastic uncertainty by stochastic linear programming methods

被引:9
|
作者
Marti, K [1 ]
机构
[1] Fed Armed Forces Univ Munich, D-85577 Neubiberg Munchen, Germany
关键词
optimal structural design; random structural parameters; stochastic linear programming;
D O I
10.1016/S0951-8320(01)00003-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the optimal plastic design of mechanical structures one has to minimize a certain cost function under the equilibrium equation, the yield condition and some additional simple constraints, like box constraints. A basic problem is that the model parameters and the external loads are random variables with a certain probability distribution. In order to get reliable/robust optimal designs with respect to random parameter variations, by using stochastic optimization methods, the original random structural optimization problem must be replaced by an appropriate deterministic substitute problem. Starting from the equilibrium equation and the yield condition, the problem can be described in the framework of stochastic (linear) programming problems with 'complete fixed recourse'. The main properties of this class of substitute problems are discussed, especially the 'dual decomposition' data structure which enables the use of very efficient special purpose LP-solvers. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:165 / 177
页数:13
相关论文
共 50 条
  • [21] Stochastic Optimal Control and Linear Programming Approach
    R. Buckdahn
    D. Goreac
    M. Quincampoix
    [J]. Applied Mathematics & Optimization, 2011, 63 : 257 - 276
  • [22] Stochastic Optimal Control and Linear Programming Approach
    Buckdahn, R.
    Goreac, D.
    Quincampoix, M.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (02): : 257 - 276
  • [23] FUZZY VERSUS STOCHASTIC APPROACHES TO MULTICRITERIA LINEAR-PROGRAMMING UNDER UNCERTAINTY
    SLOWINSKI, R
    TEGHEM, J
    [J]. NAVAL RESEARCH LOGISTICS, 1988, 35 (06) : 673 - 695
  • [24] Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticity
    Zheng, Zhibao
    Nackenhorst, Udo
    [J]. COMPUTATIONAL MECHANICS, 2024, 73 (03) : 667 - 684
  • [25] Stochastic virtual element methods for uncertainty propagation of stochastic linear elasticity
    Zhibao Zheng
    Udo Nackenhorst
    [J]. Computational Mechanics, 2024, 73 : 667 - 684
  • [26] Stochastic Programming Models for Optimal Shale Well Development and Refracturing Planning Under Uncertainty
    Drouven, Markus G.
    Grossmann, Ignacio E.
    Cafaro, Diego C.
    [J]. AICHE JOURNAL, 2017, 63 (11) : 4799 - 4813
  • [27] PROMISE/scenarios: An interactive method for multiobjective stochastic linear programming under partial uncertainty
    Urli, B
    Nadeau, R
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 155 (02) : 361 - 372
  • [28] SELECTING AN OPTIMAL SOLUTION IN STOCHASTIC LINEAR-PROGRAMMING
    SENGUPTA, JK
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1980, 11 (01) : 33 - 47
  • [29] Linear Programming Techniques and Numerics in Stochastic Optimal Harvesting
    Vieten, Martin G.
    Stockbridge, Richard H.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3177 - 3182
  • [30] Plastic structural analysis under stochastic uncertainty
    Marti, K
    [J]. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2003, 9 (03) : 303 - 325