MAXIMIZABLE INFORMATIONAL ENTROPY AS A MEASURE OF PROBABILISTIC UNCERTAINTY

被引:7
|
作者
Ou, Congjie [1 ,2 ]
El Kaabouchi, Aziz [1 ]
Nivanen, Laurent [1 ]
Chen, Jincan [1 ,3 ,4 ]
Tsobnang, Franois [1 ]
Le Mehaute, Alain [1 ]
Wang, Qiuping A. [1 ]
机构
[1] Inst Super Mat & Mecan, F-72000 Le Mans, France
[2] Huaqiao Univ, Coll Informat & Engn, Quanzhou 362021, Peoples R China
[3] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Inst Theoret Phys & Astrophys, Xiamen 361005, Peoples R China
来源
关键词
Uncertainty; varentropy; virtual work principle; probability distribution; RELAXATION; GIBBS;
D O I
10.1142/S0217979210054713
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we consider a recently proposed entropy S defined by a variational relationship dI = d (x) over bar - (dx) over bar as a measure of uncertainty of random variable x. The entropy defined in this way underlies an extension of virtual work principle (dx) over bar = 0 leading to the maximum entropy d(I - (x) over bar) = 0. This paper presents an analytical investigation of this maximizable entropy for several distributions such as the stretched exponential distribution, kappa-exponential distribution, and Cauchy distribution.
引用
收藏
页码:3461 / 3468
页数:8
相关论文
共 50 条
  • [41] A New Total Uncertainty Measure from A Perspective of Maximum Entropy Requirement
    Zhang, Yu
    Huang, Fanghui
    Deng, Xinyang
    Jiang, Wen
    ENTROPY, 2021, 23 (08)
  • [42] COHERENT INFORMATIONAL ENERGY AND ENTROPY
    AVRAMESCU, A
    JOURNAL OF DOCUMENTATION, 1980, 36 (04) : 293 - 312
  • [43] Informational entropy of Fourier maps
    Menéndez-Velázquez, A
    García-Granda, S
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2006, 62 : 129 - 135
  • [44] On the use of informational entropy in GIS
    Istituto di Idraulica, Universita di Genova, 1 Montallegro, 16145 Genova, Italy
    IAHS Publ, 242 (237-244):
  • [45] A novel quantum belief entropy for uncertainty measure in complex evidence theory
    Wu, Keming
    Xiao, Fuyuan
    INFORMATION SCIENCES, 2024, 652
  • [46] Using minimum fuzzy entropy algorithm to measure uncertainty of geodetic data
    Wei G.
    Dang Y.
    Zhang C.
    Wuhan Daxue Xuebao Xinxi Kexue Ban, 12 (1677-1682): : 1677 - 1682
  • [47] A generalized Rényi entropy to measure the uncertainty of a random permutation set
    Hao, Bingguang
    Che, Yuelin
    Chen, Luyuan
    Deng, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (23) : 8543 - 8555
  • [48] Uncertainty measure model of schema integration based on all known entropy
    Hu, W. (hwb1008@163.com), 1600, Nanjing University of Aeronautics an Astronautics (44):
  • [49] On the use of informational entropy in GIS
    Calore, C
    LaBarbera, P
    Roth, G
    REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS FOR DESIGN AND OPERATION OF WATER RESOURCES SYSTEMS, 1997, (242): : 237 - 244
  • [50] Uncertainty management and informational relevance
    Chachoua, M
    Pacholczyk, D
    DEVELOPMENTS IN APPLIED ARTIFICAIL INTELLIGENCE, PROCEEDINGS, 2002, 2358 : 680 - 691