Programmable Knot Microfibers from Piezoelectric Microfluidics

被引:17
|
作者
Yang, Chaoyu [1 ,2 ,3 ,4 ,5 ]
Yu, Yunru [4 ,5 ]
Wang, Xiaocheng [4 ,5 ]
Shang, Luoran [2 ,3 ,5 ]
Zhao, Yuanjin [1 ,4 ,5 ,6 ,7 ]
机构
[1] Nanjing Univ, Sch Med, Affiliated Drum Tower Hosp, Dept Clin Lab, Nanjing 210008, Peoples R China
[2] Fudan Univ, Zhongshan Xuhui Hosp, Shanghai Xuhui Cent Hosp, Shanghai 200032, Peoples R China
[3] Fudan Univ, Shanghai Key Lab Med Epigenet, Int Colab Med Epigenet & Metab, Minist Sci & Technol,Inst Biomed Sci, Shanghai 200032, Peoples R China
[4] Zhejiang Lab Regenerat Med Vis & Brain Hlth, Oujiang Lab, Wenzhou 325001, Zhejiang, Peoples R China
[5] Univ Chinese Acad Sci, Wenzhou Inst, Wenzhou 325001, Peoples R China
[6] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Bioelect, Nanjing 210096, Peoples R China
[7] Fudan Univ, State Key Lab Mol Engn Polymers, Shanghai 200438, Peoples R China
基金
中国国家自然科学基金;
关键词
droplets; piezoelectric microfluidics; programmable microfibers; spindle-knot microfibers; water transportation; FIBERS;
D O I
10.1002/smll.202104309
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microfibers have demonstrated significant application values in a large number of areas. Current efforts focus on developing new technologies to prepare microfibers with controllable morphological and structural features to enhance their functions. Here, a piezoelectric microfluidic platform is presented for consecutive spinning of functional microfibers with programmable spindle-knots. In this platform, a jet of a pregel-solution flowing in the channel can be subjected to a programmable piezoelectric signal and vibrates synchronously. Following a rapid polymerization of the wavy jet, microfibers with corresponding morphologies can be generated, including uniform, gradient, and symmetrical knots. Such a unique knot structure contributes to a water-collection mechanism. Thus, it has been observed that microfibers with programmed knots enable even more flexible droplet handling and active water transport. In addition, by constructing higher-order knot fiber networks, practical applications including spray reaction, lab-on-a-chip vapor detection, etc., can also be demonstrated. it is believed that this platform opens a new avenue for fiber spinning, and the programmable microfibers would be highly applicable in chemical, biomedical, and environmental areas.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Programmable dynamic interfacial spinning of bioinspired microfibers with volumetric encoding†
    Zhang, Ming
    Wang, Shiyu
    Zhu, Yuanqing
    Zhu, Zhiqiang
    Si, Ting
    Xu, Ronald X.
    MATERIALS HORIZONS, 2021, 8 (06) : 1756 - 1768
  • [32] Piezoelectric Biopolymer-Polymer Composite Films and Microfibers
    Farrar, D.
    Yu, M. S.
    West, J. E.
    Moon, W.
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2010, 28 (03): : 258 - 259
  • [33] A disposable on-chip microvalve and pump for programmable microfluidics
    Im, Sung B.
    Uddin, M. Jalal
    Jin, Gyeong J.
    Shim, Joon S.
    LAB ON A CHIP, 2018, 18 (09) : 1310 - 1319
  • [34] Acoustically Driven Programmable Microfluidics for Biological and Chemical Applications
    Wixforth, Achim
    JALA - Journal of the Association for Laboratory Automation, 2006, 11 (06): : 399 - 405
  • [35] Microfluidics based synthesis of coiled hydrogel microfibers with flexible shape and dimension control
    Nie, Minghao
    Takeuchi, Shoji
    SENSORS AND ACTUATORS B-CHEMICAL, 2017, 246 : 358 - 362
  • [36] Microfluidics-Based On-Demand Generation of Nonwoven and Single Polymer Microfibers
    Pullagura, Bhargav Krishna
    Gundabala, Venkat
    LANGMUIR, 2020, 36 (05) : 1227 - 1234
  • [37] Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential
    Angelozzi, Marco
    Miotto, Martina
    Penolazzi, Letizia
    Mazzitelli, Stefania
    Keane, Timothy
    Badylak, Stephen F.
    Piva, Roberta
    Nastruzzi, Claudio
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 56 : 141 - 153
  • [38] Rapid prototyping of microfluidics devices on a piezoelectric substrate
    Zhang, An-Liang
    FERROELECTRICS, 2020, 555 (01) : 224 - 230
  • [39] Programmable optical transport of particles in knot circuits and networks
    Rodrigo, Jose A.
    Angulo, Mercedes
    Alieva, Tatiana
    OPTICS LETTERS, 2018, 43 (17) : 4244 - 4247
  • [40] Programmable driver targets piezoelectric actuators
    Saxena, P.
    Dubey, V. K.
    Singh, I. J.
    Vora, H. S.
    EDN, 2011, 56 (11) : 45 - 47