Quantum invariants of motion in a generic many-body system

被引:27
|
作者
Prosen, T [1 ]
机构
[1] Univ Ljubljana, Dept Phys, Fac Math & Phys, Ljubljana 1111, Slovenia
来源
关键词
D O I
10.1088/0305-4470/31/37/004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A dynamical Lie algebraic method for the construction of quantum invariants of motion in non-integrable many-body systems of infinite size is proposed and applied to a simple but generic toy model, namely an infinite kicked t-V chain of interacting spinless fermions. The transition from an integrable via quasi-integrable (intermediate) to a quantum ergodic (quantum mixing) regime in parameter space is investigated. A dynamical phase transition between an ergodic and intermediate (neither ergodic nor completely integrable) regime in thermodynamic limit is proposed. The existence or non-existence of local conservation laws corresponds to the intermediate or ergodic regime, respectively. The computation of time-correlation functions of typical observables by means of local conservation laws is found to be fully consistent with direct calculations on finite systems.
引用
收藏
页码:L645 / L653
页数:9
相关论文
共 50 条
  • [21] Periodically driving a many-body localized quantum system
    Bordia P.
    Lüschen H.
    Schneider U.
    Knap M.
    Bloch I.
    Nature Physics, 2017, 13 (5) : 460 - 464
  • [22] Many-body quantum system in the presence of solvable potential
    Zahra Bakhshi
    Sare Khoshdooni
    The European Physical Journal Plus, 136
  • [23] Atomic Nucleus as Chaotic Quantum Many-Body System
    Zelevinsky, V.
    ACTA PHYSICA POLONICA A, 2015, 128 (06) : 1008 - 1016
  • [24] Scrambling and thermalization in a diffusive quantum many-body system
    Bohrdt, A.
    Mendl, C. B.
    Endres, M.
    Knap, M.
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [25] Exotic freezing of response in a quantum many-body system
    Das, Arnab
    PHYSICAL REVIEW B, 2010, 82 (17)
  • [26] Measuring entanglement entropy in a quantum many-body system
    Islam, Rajibul
    Ma, Ruichao
    Preiss, Philipp M.
    Tai, M. Eric
    Lukin, Alexander
    Rispoli, Matthew
    Greiner, Markus
    NATURE, 2015, 528 (7580) : 77 - 83
  • [27] Measuring entanglement entropy in a quantum many-body system
    Rajibul Islam
    Ruichao Ma
    Philipp M. Preiss
    M. Eric Tai
    Alexander Lukin
    Matthew Rispoli
    Markus Greiner
    Nature, 2015, 528 : 77 - 83
  • [28] Dynamic Stabilization of a Quantum Many-Body Spin System
    Hoang, T. M.
    Gerving, C. S.
    Land, B. J.
    Anquez, M.
    Hamley, C. D.
    Chapman, M. S.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [29] Periodically driving a many-body localized quantum system
    Bordia, Pranjal
    Lueschen, Henrik
    Schneider, Ulrich
    Knap, Michael
    Bloch, Immanuel
    NATURE PHYSICS, 2017, 13 (05) : 460 - 464
  • [30] Many-body quantum system in the presence of solvable potential
    Bakhshi, Zahra
    Khoshdooni, Sare
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):