Transparent polycrystalline nanoceramics consisting of triclinic Al2SiO5 kyanite and Al2O3 corundum

被引:5
|
作者
Gaida, Nico A. [1 ,2 ]
Nishiyama, Norimasa [3 ,4 ]
Masuno, Atsunobu [5 ,6 ]
Schuermann, Ulrich [1 ]
Giehl, Christopher [2 ]
Beermann, Oliver [2 ]
Ohfuji, Hiroaki [7 ]
Bednarcik, Jozef [3 ]
Kulik, Eleonora [3 ,8 ]
Holzheid, Astrid [2 ]
Irifune, Tetsuo [7 ,9 ]
Kienle, Lorenz [1 ]
机构
[1] Univ Kiel, Inst Mat Sci, Kiel, Germany
[2] Univ Kiel, Inst Geosci, Kiel, Germany
[3] Deutsch Elektronen Synchrotron DESY, Hamburg, Germany
[4] Tokyo Inst Technol, Lab Mat & Struct, Yokohama, Kanagawa, Japan
[5] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
[6] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori, Japan
[7] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime, Japan
[8] Univ Bayreuth, Bayer Geoinst, Bayreuth, Germany
[9] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo, Japan
关键词
alumina; aluminosilicates; nanocomposites; transparent ceramics; CRYSTALLIZATION; FABRICATION; ALUMINA;
D O I
10.1111/jace.15281
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Transparent polycrystalline nanoceramics consisting of triclinic Al2SiO5 kyanite (91.4 vol%) and Al2O3 corundum (8.6 vol%) were fabricated at 10 GPa and 1200-1400 degrees C. These materials were obtained by direct conversion from Al2O3-SiO2 glasses fabricated using the aerodynamic levitation technique. The material obtained at 10 GPa and 1200 degrees C shows the highest optical transparency with a real in-line transmission value of 78% at a wavelength of 645 nm and a sample-thickness of 0.8 mm. This sample shows equigranular texture with an average grain size of 34 +/- 13 nm. The optical transparency increases with decreasing mean grain size of the constituent phases. The relationship between real in-line transmission and grain size is well explained by a grain-boundary scattering model based on a classical theory.
引用
收藏
页码:998 / 1003
页数:6
相关论文
共 50 条
  • [21] UNIAXIAL COMPRESSION OF KYANITE AL2O3-SIO2
    MENARD, D
    DOUKHAN, JC
    PAQUET, J
    BULLETIN DE MINERALOGIE, 1979, 102 (2-3): : 159 - 162
  • [22] SiO2-CaO-Al2O3 glass solder for joining of Al2O3 for Al2O3
    Ahn, BG
    Shiraishi, Y
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 1998, 17 (04) : 209 - 216
  • [23] Laser-induced time-resolved luminescence of orange kyanite Al2SiO5
    Gaft, M.
    Nagli, L.
    Panczer, G.
    Rossman, G. R.
    Reisfeld, R.
    OPTICAL MATERIALS, 2011, 33 (10) : 1476 - 1480
  • [24] STRUCTURE DEFECTS IN AL2SIO5 ALUMINOSILICATES
    LEFEBVRE, A
    MENARD, D
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 1979, 4 (6-7): : 563 - 563
  • [25] Optically transparent polycrystalline Al2O3 produced by spark plasma sintering
    Jiang, DongTao
    Hulbert, Dustin M.
    Anselmi-Tamburini, Umberto
    Ng, Terry
    Land, Donald
    Mukherjee, Amiya K.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (01) : 151 - 154
  • [26] Spectroscopic characteristics of Cr4+ in transparent polycrystalline Al2O3
    Yang Qiu-Hong
    Zeng Zhi-Jiang
    Xu Jun
    Ding Jun
    Su Liang-Bi
    ACTA PHYSICA SINICA, 2006, 55 (08) : 4166 - 4169
  • [27] STABILITY RELATIONS IN AL2SIO5 SYSTEM
    WEILL, DF
    JOURNAL OF GEOPHYSICAL RESEARCH, 1962, 67 (04): : 1662 - +
  • [28] Interfacial fracture of vitrified corundum (α-Al2O3)
    Jackson, MJ
    Mills, B
    TRANSACTIONS OF THE NORTH AMERICAN MANUFACTURING RESEARCH INSTITUTE OF SME, VOL XXX, 2002, 2002, : 177 - 182
  • [29] STABILITY OF AL2SIO5 SOLID SOLUTIONS
    STRENS, RGJ
    MINERALOGICAL MAGAZINE AND JOURNAL OF THE MINERALOGICAL SOCIETY, 1968, 36 (282): : 839 - &
  • [30] AMPHOTERIC CHARACTER OF AL2O3 IN THE SYSTEM CAO AL2O3 SIO2
    NGUYEN, VL
    SILIKATY, 1989, 33 (04): : 357 - 365