Spin-orbit qubit in a semiconductor nanowire

被引:581
|
作者
Nadj-Perge, S. [1 ]
Frolov, S. M. [1 ]
Bakkers, E. P. A. M. [1 ,2 ]
Kouwenhoven, L. P. [1 ]
机构
[1] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
SINGLE-ELECTRON SPIN; QUANTUM-DOT; MANIPULATION; FIELD;
D O I
10.1038/nature09682
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics(1). Even at the level of single electrons, the spin-orbit interaction has proven promising for coherent spin rotations(2). Here we implement a spin-orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin-orbit interaction is so strong that spin and motion can no longer be separated(3,4). In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth(5). Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires(6). The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.
引用
收藏
页码:1084 / 1087
页数:4
相关论文
共 50 条
  • [21] Theory of silicon spin qubit relaxation in a synthetic spin-orbit field
    Hosseinkhani, Amin
    Burkard, Guido
    [J]. PHYSICAL REVIEW B, 2022, 106 (07)
  • [22] NEGATIVE SPIN-ORBIT BOWING IN SEMICONDUCTOR ALLOYS
    WEI, SH
    ZUNGER, A
    [J]. PHYSICAL REVIEW B, 1989, 39 (09): : 6279 - 6282
  • [23] Squeezing dynamics of a nanowire system with spin-orbit interaction
    R. I. Mohamed
    Ahmed Farouk
    A. H. Homid
    O. H. El-Kalaawy
    Abdel-Haleem Abdel-Aty
    M. Abdel-Aty
    S. Ghose
    [J]. Scientific Reports, 8
  • [24] Squeezing dynamics of a nanowire system with spin-orbit interaction
    Mohamed, R. I.
    Farouk, Ahmed
    Homid, A. H.
    El-Kalaawy, O. H.
    Abdel-Aty, Abdel-Haleem
    Abdel-Aty, M.
    Ghose, S.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [25] Spin-orbit induced electronic spin separation in semiconductor nanostructures
    Kohda, Makoto
    Nakamura, Shuji
    Nishihara, Yoshitaka
    Kobayashi, Kensuke
    Ono, Teruo
    Ohe, Jun-ichiro
    Tokura, Yasuhiro
    Mineno, Taiki
    Nitta, Junsaku
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [26] Asymmetric current-phase relation due to spin-orbit interaction in semiconductor nanowire Josephson junction
    Yokoyama, Tomohiro
    Eto, Miluo
    Nazarov, Yuli V.
    [J]. PHYSICS OF SEMICONDUCTORS, 2013, 1566 : 423 - +
  • [27] Spin-orbit interaction and all-semiconductor spintronics
    Voskoboynikov, O
    Lee, CP
    [J]. JOURNAL OF SUPERCONDUCTIVITY, 2003, 16 (02): : 361 - 363
  • [28] Hanle effect in semiconductor with weak spin-orbit coupling
    Mi, Yi-lin
    Zhao, Xiao-qing
    Wang, Lan
    [J]. OPTOELECTRONIC MATERIALS, PTS 1AND 2, 2010, 663-665 : 978 - +
  • [29] Electrical manipulation of spin-orbit coupling in semiconductor heterostructures
    Sih, Vanessa
    Awschalom, David D.
    [J]. Journal of Applied Physics, 2007, 101 (08):
  • [30] Spin-orbit effects on the optical anisotropy of semiconductor surfaces
    Vázquez-Nava, RA
    Mendoza, BS
    Arzate, N
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2005, 242 (15): : 3022 - 3026