Synthesis and electrochemical performance of LiV3O8/carbon nanosheet composite as cathode material for lithium-ion batteries

被引:52
|
作者
Idris, Nurul Hayati [1 ,2 ]
Rahman, M. M. [1 ]
Wang, Jia-Zhao [1 ]
Chen, Zhi-Xin [3 ]
Liu, Hua-Kun [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[2] Univ Malaysia Terengganu, Fac Sci, Dept Phys Sci, Kuala Terengganu 21030, Malaysia
[3] Univ Wollongong, Sch Mech Mechtron & Mat Engn, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Layered structures; Nanocomposites; Transmission electron microscopy (TEM); Thermogravimetric analysis (TGA); Scanning electron microscopy (SEM); ELECTRICAL-CONDUCTIVITY; SECONDARY BATTERIES; NEGATIVE ELECTRODES; LIV3O8; NANORODS; CARBON; CO3O4; NANOCOMPOSITES; INTERCALATION; NANOTUBES; CAPACITY;
D O I
10.1016/j.compscitech.2010.11.025
中图分类号
TB33 [复合材料];
学科分类号
摘要
To improve the rate capability and cyclability of LiV3O8 cathode for Li-ion batteries, LiV3O8 was modified by forming LiV3O8/carbon nanosheet composite. The LiV3O8/carbon nanosheet composite was successfully achieved via a hydrothermal route followed by a carbon coating process. The morphology and structural properties of the samples were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). TEM observations demonstrated that LiV3O8/carbon composite has a very flat sheet-like morphology, with each nanosheet having a smooth surface and a typical length of 400-700 nm, width of 200-350 nm, and thickness of 10-50 nm. Each sheet was surrounded by a thick layer of amorphous carbon. Electrochemical tests showed that the LiV3O8/carbon composite cathode features long-term cycling stability (194 mAh g(-1) at 0.2 C after 100 cycles) and excellent rate capability (110 mAh g(-1) at 5 C. 104 mAh g(-1) at 10 C, and 82 mAh g(-1) at 20 C after 250 cycles). Electrochemical impedance spectra (EIS) indicated that the LiV3O8/carbon composite electrode has very low charge-transfer resistance compared with pristine LiV3O8, indicating the enhanced ionic conductivity of the LiV3O8/carbon composite. The enhanced cycling stability is attributed to the fact that the LiV3O8/carbon composite can prevent the aggregation of active materials, accommodate the large volume variation, and maintain good electronic contact. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:343 / 349
页数:7
相关论文
共 50 条
  • [21] Influence of NiCl2 modification on the electrochemical performance of LiV3O8 cathode for lithium ion batteries
    Liu, Li
    Tian, Fanghua
    Wang, Xingyan
    Yang, Zhenhua
    Wang, Xianyou
    IONICS, 2013, 19 (01) : 9 - 15
  • [22] Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries
    Feng, Yan
    Li, Yali
    Hou, Feng
    MATERIALS LETTERS, 2009, 63 (15) : 1338 - 1340
  • [23] Influence of NiCl2 modification on the electrochemical performance of LiV3O8 cathode for lithium ion batteries
    Li Liu
    Fanghua Tian
    Xingyan Wang
    Zhenhua Yang
    Xianyou Wang
    Ionics, 2013, 19 : 9 - 15
  • [24] Ultrasonically treated LiV3O8 as a cathode material for secondary lithium batteries
    Iwate Univ, Morioka, Japan
    J Electrochem Soc, 3 (830-835):
  • [25] Electrochemical characterization of a LiV3O8-polypyrrole composite as a cathode material for lithium ion batteries
    Tian, Fanghua
    Liu, Li
    Yang, Zhenhua
    Wang, Xingyan
    Chen, Quanqi
    Wang, Xianyou
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 127 (1-2) : 151 - 155
  • [26] Facile synthesis of cookies-shaped LiV3O8 cathode materials with good cycling performance for lithium-ion batteries
    Huang, S.
    Wang, X. L.
    Lu, Y.
    Jian, X. M.
    Zhao, X. Y.
    Tang, H.
    Cai, J. B.
    Gu, C. D.
    Tu, J. P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 584 : 41 - 46
  • [27] Ultrasonically treated LiV3O8 as a cathode material for secondary lithium batteries
    Kumagai, N
    Yu, AS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) : 830 - 835
  • [28] Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries
    Qiao, Y. Q.
    Wang, X. L.
    Zhou, J. P.
    Zhang, J.
    Gu, C. D.
    Tu, J. P.
    JOURNAL OF POWER SOURCES, 2012, 198 : 287 - 293
  • [29] Microwave solid-state synthesis of LiV3O8 as cathode material for lithium batteries
    Yang, G
    Wang, G
    Hou, WH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (22): : 11186 - 11196
  • [30] Preparation of LiV3O8/Polypyrrole and Their Derived LiV3O8/Carbon Composites as Cathode Materials for Lithium Rechargeable Batteries
    Cao, Xiaoyu
    Zhang, Jiejie
    Zhu, Limin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (09) : 7081 - 7086