Global optimization of multiplicative programs

被引:104
|
作者
Ryoo, HS
Sahinidis, NV
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
关键词
multiplicative programs; branch-and-reduce; greedy branching;
D O I
10.1023/A:1024700901538
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper develops global optimization algorithms for linear multiplicative and generalized linear multiplicative programs based upon the lower bounding procedure of Ryoo and Sahinidis [30] and new greedy branching schemes that are applicable in the context of any rectangular branch-and-bound algorithm. Extensive computational results are presented on a wide range of problems from the literature, including quadratic and bilinear programs, and randomly generated large-scale multiplicative programs. It is shown that our algorithms make possible for the first time the solution of large and complex multiplicative programs to global optimality.
引用
收藏
页码:387 / 418
页数:32
相关论文
共 50 条
  • [31] On duality for a class of quasiconcave multiplicative programs
    Scott, CH
    Jefferson, TR
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 117 (03) : 575 - 583
  • [32] Can linear programs be used to test global optimization algorithms?
    H. D. Tuan
    Computing, 1997, 59 : 91 - 93
  • [33] Treating Free Variables in Generalized Geometric Global Optimization Programs
    Han-lin Li
    Jung-fa Tsai
    Journal of Global Optimization, 2005, 33 : 1 - 13
  • [34] An Effective Global Optimization Algorithm for Quadratic Programs with Quadratic Constraints
    Shi, Dongwei
    Yin, Jingben
    Bai, Chunyang
    SYMMETRY-BASEL, 2019, 11 (03):
  • [35] An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs
    Harsha Nagarajan
    Mowen Lu
    Site Wang
    Russell Bent
    Kaarthik Sundar
    Journal of Global Optimization, 2019, 74 : 639 - 675
  • [36] Global optimization of nonconvex nonlinear programs via interval analysis
    Vaidyanathan, R., 1600, Pergamon Press Inc, Tarrytown, NY, United States (18):
  • [37] Can linear programs be used to test global optimization algorithms?
    Tuan, HD
    COMPUTING, 1997, 59 (01) : 91 - 93
  • [38] An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs
    Nagarajan, Harsha
    Lu, Mowen
    Wang, Site
    Bent, Russell
    Sundar, Kaarthik
    JOURNAL OF GLOBAL OPTIMIZATION, 2019, 74 (04) : 639 - 675
  • [39] Treating free variables in generalized geometric global optimization programs
    Li, HL
    Tsai, JF
    JOURNAL OF GLOBAL OPTIMIZATION, 2005, 33 (01) : 1 - 13
  • [40] CMA-ES with exponential based multiplicative covariance matrix adaptation for global optimization
    Karmakar, Bishal
    Kumar, Abhishek
    Mallipeddi, Rammohan
    Lee, Dong-Gyu
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 79