Asymptotic entropy of random walks on regular languages over a finite alphabet

被引:2
|
作者
Gilch, Lorenz A. [1 ]
机构
[1] Graz Univ Technol, A-8010 Graz, Austria
来源
关键词
random walks; regular languages; entropy; analytic; CONTEXT-FREE PAIRS; HYPERBOLIC GROUPS; MARKOV-CHAINS; ANALYTICITY; ENDS;
D O I
10.1214/16-EJP4180
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove existence of asymptotic entropy of random walks on regular languages over a finite alphabet and we give formulas for it. Furthermore, we show that the entropy varies real-analytically in terms of probability measures of constant support, which describe the random walk. This setting applies, in particular, to random walks on virtually free groups.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] VIRAL PROCESSES BY RANDOM WALKS ON RANDOM REGULAR GRAPHS
    Abdullah, Mohammed
    Cooper, Colin
    Draief, Moez
    ANNALS OF APPLIED PROBABILITY, 2015, 25 (02): : 477 - 522
  • [32] Asymptotic direction for random walks in mixing random environments
    Guerra, Enrique
    Ramirez, Alejandro F.
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [33] Asymptotic direction in random walks in random environment revisited
    Drewitz, Alexander
    Ramirez, Alejandro F.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2010, 24 (02) : 212 - 225
  • [34] P finite automata and regular languages over countably infinite alphabets
    Dassow, Juergen
    Vaszil, Gyorgy
    MEMBRANE COMPUTING, 2006, 4361 : 367 - +
  • [35] Random walks on finite semigroups
    Barnes, GR
    Cerrito, PB
    Levi, I
    JOURNAL OF APPLIED PROBABILITY, 1998, 35 (04) : 824 - 832
  • [36] Analyticity of the entropy for some random walks
    Ledrappier, Francois
    GROUPS GEOMETRY AND DYNAMICS, 2012, 6 (02) : 317 - 333
  • [37] Entropy inequalities for random walks and permutations
    Bristiel, Alexandre
    Caputo, Pietro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 54 - 81
  • [38] Generalised entropy and asymptotic complexities of languages
    Kalnishkan, Yuri
    Vovk, Vladimir
    Vyugin, Michael V.
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 293 - +
  • [39] New operations and regular expressions for two-dimensional languages over one-letter alphabet
    Anselmo, M
    Giammarresi, D
    Madonia, M
    THEORETICAL COMPUTER SCIENCE, 2005, 340 (02) : 408 - 431
  • [40] Entropy and dyadic equivalence of random walks on a random scenery
    Heicklen, D
    Hoffman, C
    Rudolph, DJ
    ADVANCES IN MATHEMATICS, 2000, 156 (02) : 157 - 179