A high order compact finite difference scheme for time fractional Fokker-Planck equations

被引:41
|
作者
Vong, Seakweng [1 ]
Wang, Zhibo [1 ]
机构
[1] Univ Macau, Dept Math, Taipa, Macau, Peoples R China
关键词
Fractional Fokker-Planck equation; High order compact difference scheme; Energy method; Stability; Convergence; DIFFUSION EQUATIONS;
D O I
10.1016/j.aml.2014.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a high order compact (HOC) scheme for time fractional Fokker-Planck equations with variable convection is constructed. The scheme is studied using its matrix form by the energy method. We find that the difficulty arising from the variable coefficient can be overcome by simple modifications of the coefficient matrices. The scheme is shown to be stable and convergent with order tau(2-alpha) + h(4) which is higher than some recently studied schemes. Numerical examples are given to justify the theoretical analysis. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:38 / 43
页数:6
相关论文
共 50 条
  • [11] Fifth-order finite-difference scheme for Fokker-Planck equations with drift-admitting jumps
    Chen, Yaming
    Deng, Xiaogang
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [12] Finite difference scheme for the time-fractional Fokker-Planck equation with time- and space-dependent forcing
    Yan, Shuqing
    Cui, Mingrong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (02) : 379 - 398
  • [13] Thermodynamics and fractional Fokker-Planck equations
    Sokolov, IM
    PHYSICAL REVIEW E, 2001, 63 (05):
  • [14] Finite Volume Methods for N-Dimensional Time Fractional Fokker-Planck Equations
    Zhou, Shuaihu
    Jiang, Yingjun
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (06) : 3167 - 3186
  • [15] Solving the Fokker-Planck equation via the compact finite difference method
    Sepehrian, Behnam
    Radpoor, Marzieh Karimi
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (03): : 493 - 504
  • [16] A preconditioned implicit difference scheme for semilinear two-dimensional time-space fractional Fokker-Planck equations
    Zhang, Chengjian
    Zhou, Yongtao
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (04)
  • [17] ANALYTICAL APPROXIMATIONS FOR FOKKER-PLANCK EQUATIONS OF FRACTIONAL ORDER IN MULTISTEP SCHEMES
    Momani, Shaher
    Abu Arqub, Omar
    Freihat, Asad
    Al-Smadi, Mohammed
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2016, 15 (03) : 319 - 330
  • [18] Finite difference/predictor-corrector approximations for the space and time fractional Fokker-Planck equation
    Deng, Kaiying
    Deng, Weihua
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1815 - 1821
  • [19] Operator solutions for fractional Fokker-Planck equations
    Gorska, K.
    Penson, K. A.
    Babusci, D.
    Dattoli, G.
    Duchamp, G. H. E.
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [20] A second-order accurate numerical scheme for a time-fractional Fokker-Planck equation
    Mustapha, Kassem
    Knio, Omar M.
    Le Maitre, Olivier P.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (04) : 2115 - 2136