The High-Latitude Dawn-Dusk Asymmetry of Ionospheric Plasma Distribution in the Northern Hemisphere

被引:1
|
作者
Wang, Jianping [1 ,2 ,3 ]
Zhang, Beichen [1 ]
Huang, Chunming [2 ]
Liu, Ruiyuan [1 ]
Yang, Shenggao [4 ]
Huang, Yanshi [5 ]
Hu, Hongqiao [1 ]
Yang, Huigen [1 ]
机构
[1] Polar Res Inst China, Shanghai, Peoples R China
[2] Wuhan Univ, Sch Elect Informat, Dept Space Phys, Wuhan, Peoples R China
[3] Baoji Univ Arts & Sci, Inst Phys & Optoelect Technol, Baoji, Peoples R China
[4] State Key Lab Astronaut Dynam, Xian, Peoples R China
[5] Harbin Inst Technol, Inst Space Sci & Appl Technol, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
POLAR-CAP; CONVECTION; PATCHES; MODEL; IONIZATION; TONGUE; MIDDLE; FIELD;
D O I
10.1029/2022JA030292
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The high-latitude dawn-dusk asymmetrical distribution of the Mean Total Electron Content (MTEC) in the northern hemisphere was statistically investigated using Global Navigation Satellite System (GNSS) vertical TEC data in 2014. In the geomagnetic latitude (MLAT)/geomagnetic local time (MLT) coordinate system, the local time of 0 hr <= MLT < 12 hr is defined as the dawn, and 12 hr <= MLT < 24 hr is defined as the dusk at MLAT is greater than 70 degrees. The sunlit high-density plasma at lower latitudes in the postnoon sector is the primary source of the asymmetrical MTEC distribution that the duskside MTEC is larger than the dawnside. Except for summer, the diurnal variations of the dusk-dawn difference (DMTEC) and dusk-dawn ratio (DDR) have two peaks and two valleys. The DMTEC and DDR also have significant seasonal variation, which is the greatest in spring (2.9TECu and 22.2%) and the smallest in summer (1.0TECu and 9.2%). The DMTEC and DDR depend significantly on the Kp index and the direction of interplanetary magnetic field (IMF). Except for the DMTEC in spring, the DMTEC and DDR are larger during disturbed times than during quiet times. Except for IMF Bz > 0 in summer, the DMTEC and DDR are larger when IMF By 0, especially in spring and winter.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Heating of the high-latitude ionospheric plasma by electric fields
    Davies, JA
    Robinson, TR
    COUPLING AND ENERGETICS IN THE STRATOSPHERE-MESOSPHERE-THERMOSPHERE-IONOSPHERE SYSTEM, 1997, 20 (06): : 1125 - 1128
  • [42] A model of the near magnetosphere with a dawn-dusk asymmetry - 1. Mathematical structure
    Tsyganenko, NA
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A8)
  • [43] Simulation of the dawn-dusk magnetosheath asymmetry under quasi-steady states
    GUO Jiuling1
    2.Center of Space Science and Application Research
    Science Bulletin, 2005, (04) : 341 - 346
  • [44] A survey of high-latitude molecular gas in the northern Galactic hemisphere
    Hartmann, D
    Magnani, L
    Thaddeus, P
    ASTROPHYSICAL JOURNAL, 1998, 492 (01): : 205 - 212
  • [45] Dawn-dusk asymmetry in spatial distribution and origin of energetic ion events upstream the Earth's bow shock
    Anagnostopoulos, GC
    Vassiliadis, ES
    Karanikola, I
    PLANETARY AND SPACE SCIENCE, 2005, 53 (1-3) : 53 - 58
  • [46] Hemispheric Asymmetry of the Premidnight Aurora Associated With the Dawn-Dusk Component of the Interplanetary Magnetic Field
    Liou, K.
    Mitchell, E. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (03) : 1625 - 1634
  • [47] Auroral Oval Morphology: Dawn-Dusk Asymmetry Partially Induced by Earth's Rotation
    Decotte, Margot
    Laundal, Karl M.
    Hatch, Spencer M.
    Reistad, Jone P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2023, 128 (06)
  • [48] Dawn-Dusk Asymmetry in Energetic (>20 keV) Particles Adjacent to Saturn's Magnetopause
    Liou, Kan
    Paranicas, Chris
    Vines, Sarah
    Kollmann, Peter
    Allen, Robert C.
    Clark, George B.
    Mitchell, Donald G.
    Jackman, Caitriona M.
    Masters, Adam
    Achilleos, Nick
    Roussos, Elias
    Krupp, Norbert
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (02)
  • [49] Dawn-dusk asymmetry in the main auroral emissions at Jupiter observed with Juno-UVS
    Groulard, A.
    Bonfond, B.
    Grodent, D.
    Gerard, J. -C.
    Greathouse, T. K.
    Hue, V.
    Gladstone, G. R.
    Versteeg, M. H.
    ICARUS, 2024, 413
  • [50] Magnetotail Fast Flow Occurrence Rate and Dawn-Dusk Asymmetry at XGSM ∼-60 RE
    Kiehas, S. A.
    Runov, A.
    Angelopolos, V.
    Hietala, H.
    Korovinksiy, D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (03) : 1767 - 1778