Feature Selection for SVM-Based Vascular Anomaly Detection

被引:0
|
作者
Zuluaga, Maria A. [1 ,2 ,3 ,4 ,5 ]
Delgado Leyton, Edgar J. F. [1 ,2 ,3 ,4 ,5 ]
Hernandez Hoyos, Marcela [1 ]
Orkisz, Maciej [2 ,3 ,4 ,5 ]
机构
[1] Univ Los Andes, Grp Imagine, Grp Ingn Biomed, Bogota, Colombia
[2] Univ Lyon, CREATIS, F-69621 Villeurbanne, France
[3] Univ Lyon 1, F-69621 Villeurbanne, France
[4] NSA Lyon, F-69621 Villeurbanne, France
[5] CNRS, UMR5220, F-69621 Villeurbanne, France
关键词
CLASSIFICATION; SEGMENTATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work explores feature selection to improve the performance in the vascular anomaly detection domain. Starting from a previously defined classification framework based on Support Vector Machines (SVM), we attempt to determine features that improve classification performance and to define guidelines for feature selection. Three different strategies were used in the feature selection stage, while a Density Level Detection-SVM (DLD-SVM) was used to validate the performance of the selected features over testing data. Results show that a careful feature selection results in a good classification performance. DLD-SVM shows a poor performance when using all the features together, owing to the curse of dimensionality.
引用
收藏
页码:141 / +
页数:3
相关论文
共 50 条
  • [31] Nonparametric feature normalization for SVM-based speaker verification
    Stolcke, Andreas
    Kajarekar, Sachin
    Ferrer, Luciana
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1577 - +
  • [32] SVM-based face recognition using genetic search for Frequency-Feature Subset selection
    Amine, Aouatif
    Rziza, Mohammed
    Aboutajdine, Driss
    [J]. IMAGE AND SIGNAL PROCESSING, 2008, 5099 : 321 - 328
  • [33] Enhancing Anomaly Detection Models for Industrial Applications through SVM-Based False Positive Classification
    Qiu, Ji
    Shi, Hongmei
    Hu, Yuhen
    Yu, Zujun
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [34] Improving an SVM-based Liver Segmentation Strategy by the F-score Feature Selection Method
    Xu, Y.
    Liu, J.
    Hu, Q. M.
    Chen, Z. J.
    Du, X. H.
    Heng, P. A.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 13 - 16
  • [35] A SVM-based Software Homology Detection Method
    Sun, Bang
    Liu, Xiaoming
    Lei, Dian
    Li, Qi
    [J]. PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND COMPUTER APPLICATION, 2016, 30 : 201 - 204
  • [36] SVM-Based Failure Detection of GHT Localizations
    Blaffert, T.
    Lorenz, C.
    Nickisch, H.
    Peters, J.
    Weese, J.
    [J]. MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [37] An Incremental SVM for Intrusion Detection Based on Key Feature Selection
    Xia, Yong-Xiang
    Shi, Zhi-Cai
    Hu, Zhi-Hua
    [J]. 2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, 2009, : 205 - +
  • [38] SVM-Based Normal Pressure Hydrocephalus Detection
    Rau, Alexander
    Kim, Suam
    Yang, Shan
    Reisert, Marco
    Kellner, Elias
    Duman, Ikram Eda
    Stieltjes, Bram
    Hohenhaus, Marc
    Beck, Juergen
    Urbach, Horst
    Egger, Karl
    [J]. CLINICAL NEURORADIOLOGY, 2021, 31 (04) : 1029 - 1035
  • [39] An SVM-Based Ensemble Approach for Intrusion Detection
    Sahu, Santosh Kumar
    Katiyar, Akanksha
    Kumari, Kanchan Mala
    Kumar, Govind
    Mohapatra, Durga Prasad
    [J]. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY AND WEB ENGINEERING, 2019, 14 (01) : 66 - 84
  • [40] SVM-based Approach for Buried Object Detection
    Zhang, Qing He
    Yao, Jing-Jing
    [J]. PIERS 2010 XI'AN: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2010, : 1657 - +