Directional scrambling of quantum information in helical multiferroics

被引:0
|
作者
Sekania, M. [1 ]
Melz, M. [1 ]
Sedlmayr, N. [2 ]
Mishra, Sunil K. [3 ]
Berakdar, J. [1 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06099 Halle, Germany
[2] Marie Curie Sklodowska Univ, Inst Phys, Plac Marii Sklodowskiej Curie 1, PL-20031 Lublin, Poland
[3] Banaras Hindu Univ, Indian Inst Technol, Dept Phys, Varanasi 221005, Uttar Pradesh, India
关键词
DYNAMICS;
D O I
10.1103/PhysRevB.104.224421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry. Understanding this phenomenon, also called quantum scrambling, is a prerequisite for employing interacting systems for quantum information processing. The character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators (OTOCs) containing information on correlation buildup and entanglement spreading. Employing OTOC, we study and quantify the directionality of quantum information propagation in oxide-based helical spin systems hosting a spin-driven ferroelectric order. In these systems, magnetoelectricity permits the spin dynamics and associated information content to be controlled by an electric field coupled to the emergent ferroelectric order. We show that topologically nontrivial quantum phases, such as chiral or helical spin ordering, allow for electric-field controlled anisotropic scrambling and a direction-dependent buildup of quantum correlations. Based on general symmetry considerations, we find that starting from a pure state (e.g., the ground state) or a finite temperature state is essential for observing directional asymmetry in scrambling. In the systematic numerical studies of OTOC on finite-size helical multiferroic chains, we quantify the directional asymmetry of the scrambling and verify the conjectured form of the OTOC around the ballistic wavefront. The obtained direction-dependent butterfly velocity v(B)(n) provides information on the speed of the ballistic wavefront. In general, our calculations show an early time power-law behavior of OTOC, as expected from an analytic expansion for small times. The long-time behavior of OTOC reveals the importance of (non)integrability of the underlying Hamiltonian as well as the implications of conserved quantities such as the z projection of the total spin. The results point to the potential of spin-driven ferroelectric materials for the use in solid-state-based quantum information processing.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Helical multiferroics for electric field controlled quantum information processing
    Azimi, M.
    Chotorlishvili, L.
    Mishra, S. K.
    Greschner, S.
    Vekua, T.
    Berakdar, J.
    [J]. PHYSICAL REVIEW B, 2014, 89 (02)
  • [2] Verified quantum information scrambling
    K. A. Landsman
    C. Figgatt
    T. Schuster
    N. M. Linke
    B. Yoshida
    N. Y. Yao
    C. Monroe
    [J]. Nature, 2019, 567 : 61 - 65
  • [3] Verified quantum information scrambling
    Landsman, K. A.
    Figgatt, C.
    Schuster, T.
    Linke, N. M.
    Yoshida, B.
    Yao, N. Y.
    Monroe, C.
    [J]. NATURE, 2019, 567 (7746) : 61 - +
  • [4] Measuring the scrambling of quantum information
    Swingle, Brian
    Bentsen, Gregory
    Schleier-Smith, Monika
    Hayden, Patrick
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [5] Thermodynamics of quantum information scrambling
    Campisi, Michele
    Goold, John
    [J]. PHYSICAL REVIEW E, 2017, 95 (06)
  • [6] Quantum information scrambling in molecules
    Zhang, Chenghao
    Wolynes, Peter G.
    Gruebele, Martin
    [J]. PHYSICAL REVIEW A, 2022, 105 (03)
  • [7] Information scrambling in quantum circuits
    Mi, Xiao
    Roushan, Pedram
    Quintana, Chris
    Mandra, Salvatore
    Marshall, Jeffrey
    Neill, Charles
    Arute, Frank
    Arya, Kunal
    Atalaya, Juan
    Babbush, Ryan
    Bardin, Joseph C.
    Barends, Rami
    Basso, Joao
    Bengtsson, Andreas
    Boixo, Sergio
    Bourassa, Alexandre
    Broughton, Michael
    Buckley, Bob B.
    Buell, David A.
    Burkett, Brian
    Bushnell, Nicholas
    Chen, Zijun
    Chiaro, Benjamin
    Collins, Roberto
    Courtney, William
    Demura, Sean
    Derk, Alan R.
    Dunsworth, Andrew
    Eppens, Daniel
    Erickson, Catherine
    Farhi, Edward
    Fowler, Austin G.
    Foxen, Brooks
    Gidney, Craig
    Giustina, Marissa
    Gross, Jonathan A.
    Harrigan, Matthew P.
    Harrington, Sean D.
    Hilton, Jeremy
    Ho, Alan
    Hong, Sabrina
    Huang, Trent
    Huggins, William J.
    Ioffe, L. B.
    Isakov, Sergei, V
    Jeffrey, Evan
    Jiang, Zhang
    Jones, Cody
    Kafri, Dvir
    Kelly, Julian
    [J]. SCIENCE, 2021, 374 (6574) : 1479 - +
  • [8] Quantum information scrambling after a quantum quench
    Alba, Vincenzo
    Calabrese, Pasquale
    [J]. PHYSICAL REVIEW B, 2019, 100 (11)
  • [9] Scrambling of quantum information validated by quantum teleportation
    Jonathan Home
    [J]. Nature, 2019, 567 (7746) : 36 - 37
  • [10] Quantum-information scrambling validated
    Home, Jonathan
    [J]. NATURE, 2019, 567 (7746) : 36 - 37