Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)

被引:20
|
作者
Lu, Yumao [1 ]
Roychowdhury, Vwani [2 ]
机构
[1] Yahoo Inc, Sunnyvale, CA 94089 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
关键词
randomized sampling; support vector machine; support vector regression; parallel algorithm;
D O I
10.1007/s10115-007-0082-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A parallel randomized support vector machine (PRSVM) and a parallel randomized support vector regression (PRSVR) algorithm based on a randomized sampling technique are proposed in this paper. The proposed PRSVM and PRSVR have four major advantages over previous methods. (1) We prove that the proposed algorithms achieve an average convergence rate that is so far the fastest bounded convergence rate, among all SVM decomposition training algorithms to the best of our knowledge. The fast average convergence bound is achieved by a unique priority based sampling mechanism. (2) Unlike previous work (Provably fast training algorithm for support vector machines, 2001) the proposed algorithms work for general linear-nonseparable SVM and general non-linear SVR problems. This improvement is achieved by modeling new LP-type problems based on Karush-Kuhn-Tucker optimality conditions. (3) The proposed algorithms are the first parallel version of randomized sampling algorithms for SVM and SVR. Both the analytical convergence bound and the numerical results in a real application show that the proposed algorithm has good scalability. (4) We present demonstrations of the algorithms based on both synthetic data and data obtained from a real word application. Performance comparisons with SVMlight show that the proposed algorithms may be efficiently implemented.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 50 条
  • [21] Interval Support Vector Machine in Regression Analysis
    Arjmandzadeh, Ameneh
    Effati, Sohrab
    Zamirian, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 565 - 571
  • [22] A rough ν-twin support vector regression machine
    Zhenxia Xue
    Roxin Zhang
    Chuandong Qin
    Xiaoqing Zeng
    Applied Intelligence, 2018, 48 : 4023 - 4046
  • [23] On-line support vector machine regression
    Martin, M
    MACHINE LEARNING: ECML 2002, 2002, 2430 : 282 - 294
  • [24] Possibilistic Regression Analysis by Support Vector Machine
    Hao, Pei-Yi
    IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 889 - 894
  • [25] Twin Support Vector Machine Based Regression
    Khemchandani, Reshma
    Goyal, Keshav
    Chandra, Suresh
    2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 18 - +
  • [26] A Support Vector Machine for Regression in Complex Field
    Lang, Rongling
    Zhao, Fei
    Shi, Yongtang
    INFORMATICA, 2017, 28 (04) : 651 - 664
  • [27] A rough ν-twin support vector regression machine
    Xue, Zhenxia
    Zhang, Roxin
    Qin, Chuandong
    Zeng, Xiaoqing
    APPLIED INTELLIGENCE, 2018, 48 (11) : 4023 - 4046
  • [28] Fuzzy support vector machine for regression estimation
    Sun, ZH
    Sun, YX
    2003 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-5, CONFERENCE PROCEEDINGS, 2003, : 3336 - 3341
  • [29] Prediction intervals for support vector machine regression
    Seok, K
    Hwang, C
    Cho, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (10) : 1887 - 1898
  • [30] A fuzzy model of support vector machine regression
    Hao, PY
    Chiang, JH
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 738 - 742