Detecting perfect powers in essentially linear time

被引:26
|
作者
Bernstein, DJ [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1090/S0025-5718-98-00952-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper (1) gives complete details of an algorithm to compute approximate kth roots; (2) uses this in an algorithm that, given an integer n > 1, either writes n as a perfect power or proves that n is not a perfect power; (3) proves, using Loxton's theorem on multiple linear forms in logarithms, that this perfect-power decomposition algorithm runs in time (log n)(1+o(1)).
引用
收藏
页码:1253 / 1283
页数:31
相关论文
共 50 条
  • [21] 108.03 Remarks on perfect powers
    Shahali, H. A.
    MATHEMATICAL GAZETTE, 2024, 108 (571): : 122 - 124
  • [22] Differences between perfect powers
    Bennett, Michael A.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2008, 51 (03): : 337 - 347
  • [23] ON THE DIFFERENCE BETWEEN PERFECT POWERS
    TURK, J
    ACTA ARITHMETICA, 1986, 45 (04) : 289 - 307
  • [24] PERFECT POWERS WITH THREE DIGITS
    Bennett, Michael A.
    Bugeaud, Yann
    MATHEMATIKA, 2014, 60 (01) : 66 - 84
  • [25] Perfect powers in an arithmetic progression
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (06): : 550 - 551
  • [26] ON PERFECT POWERS IN LUCAS SEQUENCES
    Bugeaud, Yann
    Luca, Florian
    Mignotte, Maurice
    Siksek, Samir
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2005, 1 (03) : 309 - 332
  • [27] Perfect powers expressible as sums of two fifth or seventh powers
    Dahmen, Sander R.
    Siksek, Samir
    ACTA ARITHMETICA, 2014, 164 (01) : 65 - 100
  • [28] Perfect powers in elliptic divisibility sequences
    Nowroozi, Maryam
    Siksek, Samir
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (11) : 3331 - 3345
  • [29] Sums of Fibonacci numbers that are perfect powers
    Ziegler, Volker
    QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1717 - 1742
  • [30] PERFECT POWERS THAT ARE SUMS OF CONSECUTIVE CUBES
    Bennett, Michael A.
    Patel, Vandita
    Siksek, Samir
    MATHEMATIKA, 2017, 63 (01) : 230 - 249