Quantization of Yang-Mills theory

被引:18
|
作者
Muslih, SI [1 ]
El-Zalan, HA
El-Sabaa, F
机构
[1] Al Azhar Univ Gaza, Gaza Palestine Natl Author, Dept Phys, Cairo, Egypt
[2] Ain Shams Univ, Dept Math, Cairo, Egypt
关键词
D O I
10.1023/A:1026493105409
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The canonical formulation of a constrained system is discussed. Quantization of the massive Yang-Mills field as an application of a field theory containing second-class constraints is studied. The set of Hamilton-Jacobi partial differential equations and the path integral of these theories are obtained by using the Muslih method.
引用
收藏
页码:2495 / 2502
页数:8
相关论文
共 50 条
  • [31] Quantization of a particle in a background Yang-Mills field
    Wu, YR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) : 867 - 875
  • [32] Yang-Mills Theory of Gravity
    Al Matwi, Malik
    [J]. PHYSICS, 2019, 1 (03): : 339 - 359
  • [33] YANG-MILLS THEORY ON A CIRCLE
    HETRICK, JE
    HOSOTANI, Y
    [J]. PHYSICS LETTERS B, 1989, 230 (1-2) : 88 - 92
  • [34] YANG-MILLS THEORY ON A CYLINDER
    RAJEEV, SG
    [J]. PHYSICS LETTERS B, 1988, 212 (02) : 203 - 205
  • [35] New approach to the quantization of the Yang-Mills field
    A. A. Slavnov
    [J]. Theoretical and Mathematical Physics, 2015, 183 : 585 - 596
  • [36] The Quantum Yang-Mills Theory
    Metaxas, Dimitrios
    [J]. UNIVERSE, 2023, 9 (09)
  • [37] STOCHASTICITY IN YANG-MILLS THEORY
    VILLARROEL, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (09) : 2132 - 2136
  • [38] YANG-MILLS THEORY ON HYPERTORUS
    SCHECHTER, BM
    [J]. PHYSICAL REVIEW D, 1977, 16 (10): : 3015 - 3020
  • [39] Emergent Yang-Mills theory
    Robert de Mello Koch
    Jia-Hui Huang
    Minkyoo Kim
    Hendrik J.R. Van Zyl
    [J]. Journal of High Energy Physics, 2020
  • [40] THEORY OF YANG-MILLS FIELDS
    POPOV, DA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) : 879 - 885