The List Point Arboricity of Some Complete Multi-partite Graphs

被引:0
|
作者
Xue, Nini [1 ]
Wang, Wei [1 ]
机构
[1] Tarim Univ, Coll Informat Engn, Alar 843300, Xinjiang, Peoples R China
关键词
List point arboricity; Complete multi-partite graphs; NUMBER;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph. The point arboricity of G, denoted by rho(G), is the minimum number of colors that can be used to color the vertices of G so that each color class induces an acyclic subgraph of G. The list point arboricity rho(l)(G) is the minimum k so that there is an acyclic L-coloring for any list assignment L of G which vertical bar L(v)vertical bar >= k. So rho(G) <= rho(l)(G). Zhen and Wu conjectured that if vertical bar V(G)vertical bar <= 3 rho(G), then rho(l)(G) = rho(G). Motivated by this, we investigate the list point arboricity of some complete multi-partite graphs of order slightly larger than 3 rho(G), and obtain p(K-m(1),K- 2(n - 1)) = rho(l)(K-m(1),K- 2(n - 1)) (m = 2, 3, 4).
引用
收藏
页码:457 / 462
页数:6
相关论文
共 50 条
  • [1] Choice number of some complete multi-partite graphs
    Enomoto, H
    Ohba, K
    Ota, K
    Sakamoto, J
    DISCRETE MATHEMATICS, 2002, 244 (1-3) : 55 - 66
  • [2] ON BALANCED CLAW DESIGNS OF COMPLETE MULTI-PARTITE GRAPHS
    USHIO, K
    DISCRETE MATHEMATICS, 1982, 38 (01) : 117 - 119
  • [3] COMPLETE MULTI-PARTITE CUTSETS IN MINIMAL IMPERFECT GRAPHS
    CORNUEJOLS, G
    REED, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1993, 59 (02) : 191 - 198
  • [4] On the asymptotic value of the choice number of complete multi-partite graphs
    Gazit, N
    Krivelevich, M
    JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 123 - 134
  • [5] Enumerations of the maximum rectilinear crossing numbers of complete and complete multi-partite graphs
    Gan, C. S.
    Koo, V. C.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2006, 9 (03): : 583 - 590
  • [6] Anti-Ramsey numbers for trees in complete multi-partite graphs
    Zhang, Meiqiao
    Dong, Fengming
    DISCRETE MATHEMATICS, 2022, 345 (12)
  • [7] LIST POINT ARBORICITY OF GRAPHS
    Xue, Nini
    Wu, Baoyindureng
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (02)
  • [8] List Point Arboricity of Dense Graphs
    Lingyan Zhen
    Baoyindureng Wu
    Graphs and Combinatorics, 2009, 25 : 123 - 128
  • [9] Equitable List Point Arboricity of Graphs
    Zhang, Xin
    FILOMAT, 2016, 30 (02) : 373 - 378
  • [10] List Point Arboricity of Dense Graphs
    Zhen, Lingyan
    Wu, Baoyindureng
    GRAPHS AND COMBINATORICS, 2009, 25 (01) : 123 - 128