Diagonalized Cartesian products of S-prime graphs are S-prime

被引:3
|
作者
Hellmuth, Marc [1 ,2 ,3 ]
Ostermeier, Lydia [1 ,2 ,3 ]
Stadler, Peter F. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Leipzig, Dept Comp Sci, Bioinformat Grp, D-04107 Leipzig, Germany
[2] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[4] Fraunhofer Inst Zelltherapie & Immunol, D-04103 Leipzig, Germany
[5] Univ Vienna, Dept Theoret Chem, A-1090 Vienna, Austria
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
S-prime; Diagonalized Cartesian product; Path-k-coloring; SUBGRAPHS;
D O I
10.1016/j.disc.2011.03.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be S-prime if, whenever it is a subgraph of a nontrivial Cartesian product graph, it is a subgraph of one of the factors. A diagonalized Cartesian product is obtained from a Cartesian product graph by connecting two vertices of maximal distance by an additional edge. We show there that a diagonalized product of S-prime graphs is again S-prime. Klavzar et al. [S. Klavzar, A. Lipovec, M. Petkovsek, On subgraphs of Cartesian product graphs, Discrete Math. 244 (2002) 223-230] proved that a graph is S-prime if and only if it admits a nontrivial path-k-coloring. We derive here a characterization of all path-k-colorings of Cartesian products of S-prime graphs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 50 条
  • [41] Tris(O,O prime -dicyclohexyl dithiophosphato-S,S prime )chromium(III)
    Xiong, R.-G.
    You, X.-Z.
    Huang, X.-Y.
    Acta Crystallographica, Section C: Crystal Structure Communications, 1995, 51 (pt 12):
  • [42] A sign for Italy's Prime Meridian
    Aebischer, Tullio
    Battinelli, Paolo
    GEOMEDIA, 2008, 12 (01) : 20 - 21
  • [43] Bertrand's postulate, the prime number theorem and product anti-magic graphs
    Kaplan, G.
    Lev, A.
    Roditty, Y.
    DISCRETE MATHEMATICS, 2008, 308 (5-6) : 787 - 794
  • [44] Golomb′s Conjecture on Prime Gaps
    Elsholtz, Christian
    AMERICAN MATHEMATICAL MONTHLY, 2017, 124 (04): : 365 - 368
  • [45] Outdated EpiPen®s:: Past their prime?
    Simons, KJ
    Gu, X
    MacNair, KR
    Semus, MJ
    Simons, FER
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2000, 105 (01) : S275 - S275
  • [46] A Note on the Prime Minister's Lecture
    Codner, Michael
    RUSI JOURNAL, 2007, 152 (01): : 17 - 19
  • [47] On Lagrange's theorem with prime variables
    Liu, JY
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 453 - 462
  • [48] Waring's Problem in Prime Numbers
    Burlakova, E. A.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2008, 63 (05) : 216 - 217
  • [49] The prime minister's commitments on the NHS
    Ham, Chris
    BRITISH MEDICAL JOURNAL, 2011, 343
  • [50] Hardy's prime problem solved
    Mackenzie, D
    NEW SCIENTIST, 2004, 182 (2446) : 13 - 13