Diagonalized Cartesian products of S-prime graphs are S-prime

被引:3
|
作者
Hellmuth, Marc [1 ,2 ,3 ]
Ostermeier, Lydia [1 ,2 ,3 ]
Stadler, Peter F. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Univ Leipzig, Dept Comp Sci, Bioinformat Grp, D-04107 Leipzig, Germany
[2] Univ Leipzig, Interdisciplinary Ctr Bioinformat, D-04107 Leipzig, Germany
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[4] Fraunhofer Inst Zelltherapie & Immunol, D-04103 Leipzig, Germany
[5] Univ Vienna, Dept Theoret Chem, A-1090 Vienna, Austria
[6] Santa Fe Inst, Santa Fe, NM 87501 USA
关键词
S-prime; Diagonalized Cartesian product; Path-k-coloring; SUBGRAPHS;
D O I
10.1016/j.disc.2011.03.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is said to be S-prime if, whenever it is a subgraph of a nontrivial Cartesian product graph, it is a subgraph of one of the factors. A diagonalized Cartesian product is obtained from a Cartesian product graph by connecting two vertices of maximal distance by an additional edge. We show there that a diagonalized product of S-prime graphs is again S-prime. Klavzar et al. [S. Klavzar, A. Lipovec, M. Petkovsek, On subgraphs of Cartesian product graphs, Discrete Math. 244 (2002) 223-230] proved that a graph is S-prime if and only if it admits a nontrivial path-k-coloring. We derive here a characterization of all path-k-colorings of Cartesian products of S-prime graphs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 80
页数:7
相关论文
共 50 条
  • [1] On S-prime submodules
    Sengelen Sevim, Esra
    Arabaci, Tarik
    Tekir, Unsal
    Koc, Suat
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (02) : 1036 - 1046
  • [2] On graded s-prime submodules
    Saber, Hicham
    Alraqad, Tariq
    Abu-Dawwas, Rashid
    AIMS MATHEMATICS, 2021, 6 (03): : 2510 - 2524
  • [3] On the complexity of recognizing S-composite and S-prime graphs
    Hellmuth, Marc
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (7-8) : 1006 - 1013
  • [4] ON WEAKLY S-PRIME SUBMODULES
    Khashan, Hani A.
    Celikel, Ece Yetkin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (06) : 1387 - 1408
  • [5] LOCALLY S-PRIME IDEALS
    Arabaci, Tarik
    Sevim, Esra Sengelen
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (12): : 1650 - 1657
  • [6] S-prime ideals of a commutative ring
    Hamed, Ahmed
    Malek, Achraf
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2020, 61 (03): : 533 - 542
  • [7] S-prime ideals of a commutative ring
    Ahmed Hamed
    Achraf Malek
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 533 - 542
  • [8] ON WEAKLY S-PRIME ELEMENTS OF LATTICES
    Atani, Shahabaddin ebrahimi
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2024, 30 (01) : 89 - 99
  • [9] S-PRIME IDEALS IN PRINCIPAL DOMAIN
    Aqalmoun, Mohamed
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2023, 29 (01) : 93 - 98
  • [10] STUDY ON S-PRIME IDEAL AS NILPOTENT IDEAL
    Mythily, C. V.
    Kalamani, D.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (05): : 1171 - 1182